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Abstract 

The study of homomorphic encryption techniques has led to significant advancements in the computing domain, particularly in 
the sphere of cloud computing.  Homomorphic encryption provides a means for securely transmitting and storing confidential 
information across and in a computer system.   The aim of this paper is to discuss the concepts and significance of homomorphic 
encryption along with the subdivisions and limitations associated with this type of encryption scheme.  Recent studies conducted 
on the topic of homomorphic encryption are highlighted and some customary models of homomorphism are demonstrated.  We 
also developed a proof of concept algorithm that demonstrates a practical use for a homomorphic encryption technique, the 
results of our algorithm are provided.  The applications of homomorphic encryption methods are vast outside of the 
computational realm, and its purpose in other fields will be explored.   
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1.  Introduction 
 

itself in such a way that the result obtained by applying operations to elements of the first set is mapped onto the 
 [1].  The 

word homomorphism is derived from the Greek word homos meaning "same" and morphe meaning "shape".  In 
computer science homomorphic encryption is used in the conversion of plaintext to ciphertext. 

 
Plaintext is any information that a senders desires to transfer to a receiver.  It can be thought of as the input to any 

algorithm or as information being transmitted before an algorithm encrypts it.   Some examples of plaintext include 
email messages, word processor files, images, or ATM and credit card transaction information.  This plaintext is 
converted to ciphertext which is data that has been encrypted and is unreadable until it has been decrypted with a 
key.   

  
Homomorphic encryption seeks to aid in this encryption process by allowing specific types of computations to be 

carried out on ciphertext which produces an encrypted result which is also in ciphertext.  Its outcome is the result of 
operations performed on the plaintext.  Case in point, one person could add two encrypted numbers and then another 
person could decrypt the result, without either of them being able to find the value of the individual numbers.   
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would like to ensure no one else gains access to that data, including the owner of the computer, conventional 
methods of encryption would protect their data while it is in transit, but not while the computation is in progress.  

leaves their 
computer until it returns.  This method requires that all the arithmetical and logical operations needed in the 
computation, which may be represented by circuits or gates, be applied to the encrypted form of the data [2]. 

2. Significance of Homomorphic Encryption 

leaking credit card information, physical addresses, passwords, and other personal information [3].  Sony accepted 
responsibility for the incident admitting that they could have taken special precautions by encrypting the data on 
their network.  Around the same time, researchers discovered that Dropbox was storing unencrypted user files.  As a 
result users closed their accounts in protest angry at the company for not encrypting their confidential files [4]. 

The solution to this issue these two companies encountered was not as apparent as one might believe.  Firstly, in 
order for data to have been used by their customers and clients, the data had to be decrypted.   To do so, the 
decryption key had to be located somewhere between the data-store and the user.  The ideal place for the decryption 
key was far from the data-store as possible and close to the user.  However, this was extremely difficult to 

their customers credit card whether they were online or not and this required a billing address.  Even if the credit 
card numbers and addresses were encrypted, they still needed to store the decryption key somewhere on their 

-filled, that decryption key had to be available 
to decrypt the data as soon as the customer clicked 4].  
needed to be able to decrypt data, and hackers hacked 
encryption would have been able to provide [4]. 

The development of cloud storage systems such as Dropbox and computing platforms gives users the ability to 
outsource storage and computations on their data, and allows businesses to outsource an increasing amount of data 
storage and management to cloud services.  Although they gain these advantages, the potential drawbacks of 
utilizing cloud services are losses of privacy and business value of confidential data.  One effective method of 

 and perform 
operations on the encrypted data.  If the encryption scheme is homomorphic, the cloud can still perform meaningful 
computations on the data, even though it is encrypted [5].   

3. Examples 

Earlier, homomorphic encryption was defined as a form of encryption where a specific algebraic operation 
performed on plaintext is equivalent to another algebraic operation performed on its ciphertext.  In mathematics, 
these operations are called mappings or functions and are operation preserving )(OP mappings.  For example, if 

),( oG and ,*)(H represent groups, an OP mapping ,*)(),(: HoGh is called a homomorphism from 
),( oG to ,*)(H .  The groups ),( oG and ,*)(H  represent sets of data and the mapping (function) that maps the 

set ),( oG  onto or into the set ,*)(H is h [6].  This function is an operation that preserves the structure from one 
set of data to the other set of data.   

Mathematical analogies can be utilized to explain the concepts behind homomorphic encryption.   The 
 Alice and Bob in 

Cipherspace article in the American Scientist Journal.  

To further explain how homomorphism works, we consider two sets of data.  One is the set of positive real 
numbers, R , and the other set is the logarithms of this set of real numbers.  On these sets, the multiplication of real 
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numbers and the addition of logarithms are homomorphic operations.  If we consider any real positive numbers
yx, and z , if zyx , then )log()log()log( zyx . This provides us with two alternate paths for 

obtaining our result, z .  For the first method, if we are given x and y , we can multiply them together to obtain z  .
As the second option, we can add the logarithms of x and y and take the antilog of the sum to arrive at z .  Both cases 
pproduce the same result [2]. he plaintext 
inputs x and y .  Or we can encrypt x and y , apply a series of operations to the ciphertext values, then decrypt the
result to arrive at the same final answer. The two routes pass through parallel universes:  plainspace and 

2].  Figs. 1a and 1b provide a visual representation of how homomorphic encryption is implemented.

In Fig. 1a, we see two sets of objects, the lower group contains the set of all integers, Z , and the higher one
represents the set of even integers.  The operations performed on these objects are addition and multiplication. 
Transitioning between the two sets requires doubling or halving a number. In the case of addition, the numbers 3
and 5 are the plaintext inputs and these inputs are encrypted by doubling their values producing 6 and 10.  In 
cipherspace, addition is performed on the ciphertexts, 6 and 10, which yields 16.  This encrypted result is decrypted
by dividing by 2 to obtain its actual value.  There is a slight variation in the example next to it which demonstrates
the process for multiplication.  Here again, the numbers 3 and 5 are used as the plaintext inputs.  They are also
converted to ciphertext by multiplying by 2 but in order to obtain the product of 3 and 5, we have to divide the
product of the encrypted values in half.   

encrypt(x) = 2x encrypt(x) = 2xdecrypt(x) = x/2 decrypt(x) = x/2

6 + 10  = 16

3 +  5  =       8

( 6 10) / 2  =   30

3 5          = 15
plainspace

cipherspace

HELLO WORLD HELLOWORLD

Encrypt

URYYB JBEYQ URYYBJBEYQ

Decryptyp

HELLO WORLD HELLOWORLD

NonNon-homomorphic Concatenationhomom  

Homomorphic ConcatenationHomomorph  

Fig. 1. (a) Example of an encryption of numerical values as plaintext using homomorphic encryption; (b) Example of the
concatenation of two words using homomorphic encryption

Fig. 1b illustrates an example of using homomorphic encryption to concatenate two words. In this example, we
see that the operation used to concatenate the plaintexts HELLO and WORLD is the same operation used foff r
concatenating their respective ciphertexts. This is not always the circumstance. The point to be made is that we can
still perform some operation on the input ciphertext which will produce new ciphertext that when decrypted, will
produce plaintext corresponding to a desired operation on the input plaintext [7].

Three topics that must be highlighted are the concepts of partially homomorphic (PHE), somewhat homomorphic
(SWHE), and fully homomorphic encryption (FHE) schemes. In partially homomorphic encryption, it is possible to
perform one operation on encrypted data, such as multiplication or addition but not both. Somewhat homomorphic
encryption techniques can perform more than one operation but can only support a limited number of addition and
multiplication operations. A cryptosystem which sustains both addition and multiplication, and ycan compute any 
function is known as a fully homomorphic encryption system. The value of using FHE over PHE or SWHE tis that 
with this model, circuits fcan be homomorphically evaluated.  This in turn, successfully permits the construction of 
pprograms which may be run on encryptions of their inputs to produce an encryption of their output.  Because these
pprograms never decrypt their inputs, they can be run by untrusted individuals without risking and revealing its inputs
and internal state.  As of today, there is one advantage that PHE and SWHE methods have over FHE techniques;
they have been found to be more efficient in their processes. 
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 Most of the current encryption schemes that can be feasibly used on cloud services are somewhat or partially 
homomorphic.  Microsoft researchers, Kristin Lautner, Vinod Vaikuntanathan, and Michael Naehrig developed a 
prototype that demonstrates a somewhat homomorphic encryption technique.  Their technique allows addition and a 
few multiplications to be performed on encrypted data, which in turn allows them to perform simple statistical 
functions on this ciphertext.  In the article Can Homomorphic Encryption be Practical?, Lautner discusses the 
operations in particular that can be computed on encrypted data.  The computations used may calculate averages, 
compute standard deviations, or perform other operations such as logistical regressions which can be used to predict 
the likelihood of specific health issues [5].    

 
Microsoft researchers are optimistic about using this SWHE scheme as a foundation for developing an applicable 

FHE technique in the future.  The implementation of this type of encryption on large scale data sets has also been 
explored.  David Wu and Jacob 

8]. 
 
These types of encryption techniques are continuing to progress and evolve.  Carson Sweet, founder of 

Cloudpassage, a technology company that provides cloud security services, stated that homomorphic encryption 
technology will need further developments before companies such as his will become interested its usage.  He states 
that, 9].  
These are some of the most desired or applied operations onto data sets today, and at the same time they are the 
current limitations of homomorphic encryption techniques. 

4. Current Studies 

4.1 Fully Homomorphic Encryption without Squashing Using Arithmetic Circuits 

In 2009, Craig Gentry presented the first fully homomorphic encryption scheme in his PhD dissertation.  This 
technique allowed one to compute arbitrary functions over encrypted data without the use of a decryption key [10].  
In his method, Gentry first constructs a somewhat homomorphic encryption, then compresses the decryption circuit 
to a more uncomplicated form.  It is then bootstrapped to obtain a fully homomorphic encryption procedure.  In 
2011 Craig Gentry and Shai Halevi devised an advanced approach that consisted of a fusion of SWHE and another 
type of encryption called multiplicatively homomorphic encryption (MHE). This novel process eliminated the need 
for the compression step Gentry originally proposed in his dissertation.  In this method, Gentry and Halevi devised 
a system to condense the FHE ciphertext into a single ciphertext whose security was superior.  This latter approach 

]. 

4.2 Fully Homomorphic Encryption without Squashing Using Arithmetic Circuits 

In the last year there has been a significant amount of advances made in developing fully homomorphic 
encryption techniques, but efficiency still rema

12].  In an effort to make fully homomorphic techniques more proficient, Gentry, along with 
fellow researchers Halevi, Peikert, and Smart studied a system to reduce the polynomial ring needed for 
homomorphic computation of the lower levels of a circuit. In ring theory or abstract algebra, a ring 
homomorphism is a function between two rings which preserves the operations of addition and multiplication.  In 
their studies, they analyzed how to transform cipher texts over a big ring into small-ring ciphertexts that encrypt the 
same data.  This procedure is known as ring switching.  In their proposed method, they used a polynomial 
composition technique that splits a high degree polynomial into several lower degree polynomials.  The idea behind 
this procedure was that the plaintext encrypted in the original large-ring packed ciphertext would be recovered as a 
simple linear function of the plaintexts encrypted in the smaller-ring ciphertexts [12].  By now transferring smaller 
sizes of ciphertext instead of larger ones, the efficiency of the process would improve. 

5. Noise Reduction 
 
There are some inevitable issues that arise when encrypting and decrypting data.  In particular, the issue with 

noise reduction continues to be problematic during this process.  Each conversion from plaintext to ciphertext has 
some noise associated with it.  This noise continues to enlarge as one adds and multiplies ciphertexts, and as a result, 
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the final ciphertext becomes indecipherable. A remedy to this concern was proposed by Gentry in his 2009 doctoral 
dissertation. He observed that if a noisy ciphertext could be decrypted and then re-encrypted, it would be restored 
with reduced noise [10].  The problem was that this decryption would require a secret key, which was not available. 
His solution was to run the ciphertext through the decryption algorithm, but with an encrypted version of the 
decryption key. This resulted in a new ciphertext that contained lower noise and was as secure as the original 
ciphertext.   

 
Alice and 

Bob in Cipherspace article.  He explains stem to model the process of a 

converted bits from plaintext to ciphertext and vice versa.  Also included in his system was an evaluate function.  
This evaluate function can be thought of as a complete computer embedded into a cryptosystem.  Its main purpose 
was to allow any computation to be performed on the ciphertext.  This computation can be represented as a circuit or 
network where input signals traverse a series of boolean or logic gates.  Because this evaluate function must be able 
to calculate any function, the circuit representing this function should be allowed to expand to any depth.  The issue 
Gentry encountered, hence the motivation behind his work, was that after data has been encrypted, it contained a 
significant amount of noise.   Gentry observed that if the noise continued to magnify, it would eventually overwhelm 
the signal.  Because of this, the number of operations performed on the data would have to be restricted or 
inaccuracies would accrue.  If the number of operations is limited then consequently, the circuit depth must also be 
limited.  As a result, his system would not have been a fully homomorphic one but instead a somewhat 
homomorphic system because the number of operations performed on it is confined [2]. 

 

Gentry recommended setting a critical threshold and decrypting the data each time the noise level approached this 
point.  The purpose of this process was to aid in filtering out the noise.  Once this occurred, the data is then 
encrypted resetting the noise to its initial low level.  As mentioned earlier, the issue with decrypting the data is that 
this requires the use of the secret key and the main advantage of using FHE is to allow computation on the ciphertext 
without this key.  Gentry suggested running the evaluate function with the decrypt function.  The decrypt function 
contains the secret key so the key supplied to the evaluate function is an encrypted version of the normal key.  In 
other words the secret key supplied to the decrypt function in the evaluate function is the ciphertext produced when 
the encrypt function is applied to the plaintext (normal key) of the secret key.  Hence, when the decrypt function is 
run with the encrypted key (secret key), the result is not plaintext; the decrypt function does not convert it back into 
plaintext.  This produces a new encryption of the ciphertext with a decreased noise level.   By re-encrypting and 
restoring the ciphertext, Gentry was able to create a fully homomorphic encryption system; the computer is now 
capable of handling a circuit of any depth and can implement any complex computation on the encrypted data [2]. 

6. Homomorphic Encryption Example 
 
To demonstrate a practical use for a homomorphic encryption technique, we developed an algorithm that models 

this process.  This is a proof of concept example that illustrates the feasibility of the approach.  We considered a 
scenario where a hospital outsources its patient information to a contracting company.  The hospital encrypts this 
information and sends this data to the contractor whose purpose is to determine the patient(s) with high blood 
pressure.   Once the agency determines these persons they return this information, in encrypted form, back to the 

process is illustrated in Fig. 2.   
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In our algorithm, a list of patients and their blood 

pressures are read in plaintext form through an input file.  

first and last name as well as their diastolic and systolic 
blood pressure numbers.  The input text file used contained a 
small sample data set of 10 patients and was only 1 kB in 
size.    

   
The algorithm encodes the data by converting the 

characters in each line of the file to its ASCII value and this 
number is multiplied by 100.  The algorithm then searches 
for diastolic pressure numbers greater than 80 and systolic 
blood pressure numbers than are higher than 120. The values 
of 80 and 120 are also encrypted using the same key; they 
are also converted to their corresponding ASCII value and 
multiplied by 100.  The algorithm compares the encoded 

for 80 and 120 to determine which patients have high blood 
pressure.  This is the operation the contractor will perform 
on the encrypted data.  The encrypted names that correspond 
with these values are sent to an output file.  The algorithm 
decrypts these names by converting them from integers back 
to characters and these names are sent to a separate file.  The 
flowchart that describes the process of the algorithm is 
shown in Fig. 3.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 
 
 
 
 Fig. 2 Outsourcing encrypted data to contractor. 

Yes 

Encrypt the high and low values for blood 
pressure by converting each character to its 

ASCII value multiplied by 100.     

number, and systolic pressure number by converting 
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Fig. 3 Homomorphic algorithm flowchart
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Because the blood pressures are declared as integers, their ASCII values are also integers; this allows us to 
perform comparison operations such as greater than and less than on the encrypted data.  This may not always be the 
case depending on the parameters of the encryption scheme and the encryption key chosen.  Our program outputs 
the names associated with those values.  No comparison operations are performed on the patient's names, only on 
the numerical blood pressures.   Although the encryption function is not the most robust function, this example 
illustrates the potential for implementing a homomorphic encryption method.  While the data set used in our case is 
a small set, the use of homomorphic encryption schemes can be extended to sets containing a sizeable amount of 
information. In Using Homomorphic Encryption for Large Scale Statistical Analysis, Wu and Haven conducted two 
experiments where they performed linear regressions on large sets of encrypted data and calculated the variance and 
mean of this data.  In these experiments the number of data points increased up to four million elements and one 
million elements respectively [8]. 

7. Other Applications 
 

Lautner, Naehrig, and Vaikuntanathan also outline various potential real-world applications of homomorphic 
encryption.  Its relevance can be seen in the realms of the financial and medical industries. 

 
7.1 Medical Industry 
 
In the past, private cloud medical records storage systems (Patient Controlled Encryption) have been proposed.  

In this system, all data for patient's medical records is encrypted by the healthcare providers before being uploaded 
to the patient's record in the cloud storage system. The patient has control over sharing and access to their records by 
sharing secret keys with specific providers.  The patients and those they grant permission, have the ability to search 
the encrypted data, but the problem is that this system does allow the cloud to do any computations on the data other 
than searching for keywords [5].  With the use of FHE, the cloud will be able to perform operations on the encrypted 
data in support of the patient.  For instance, monitors or other devices may be constantly streaming patient-related 
data to the cloud. With this type of implementation, the cloud will be able to perform operations on the encrypted 
data and send patients updates, alerts, or other pertinent information.  Some sample encrypted plaintext input may 
include blood pressure numbers, blood sugar readings, ages of patients, and other information that patients and 
healthcare administrators may deem private. 

 
7.2 Finance Sector 
 
In the financial industry clients and businesses alike work with confidential information.  Because of this the 

functions computed on the data as well as the data itself 
corporations, stock prices or their performance or inventory is often relevant to making investment decisions. Data 
may even be streamed on a continuous basis reflecting the most up-to-date information necessary for making 
decisions for [5].  Because of these factors, functions needed to perform these computations on 
this data must be exclusive.  This information may contain new predictive models for stock price performance that 
may be the result of expensive research conducted by financial analysts.  As to be expected, most companies would 
like to keep these models private to remain competitive in their respective fields and to protect their investments.  If 
a FHE encryption technique is incorporated, some of these functions can be evaluated privately.  For instance, a 
client can upload an encrypted version of the function to the cloud, such as a program where some of the evaluations 
are plaintext encrypted inputs.  The streaming data could be encrypted to the customer's public key and uploaded to 
the cloud.  The cloud service would then evaluate the private function by applying the encrypted description of the 
program to the encrypted inputs it receives. After processing, the cloud then returns the encrypted output to the 
customer [5]. 

8. Conclusion 
 
Homomorphic Encryption is one of the most relevant types of encryption methods studied in the computational 

sciences today. Why is it important?  All the techniques, including fully, somewhat, and partially homomorphic 
encryption allows one to securely transmit, store, and process encrypted data without jeopardizing the 
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confidentiality of the information.  The success of its use can be seen in many areas of industry with the finance and 
medical industries being some of the numerous fields.  Researchers have benefited from incorporating the study of 
homomorphic encryption in their own work and will continue to excel in its use in the future. 
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