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To overcome the dreaded von Neumann bottleneck and to provide sustainable improvement of 

throughput and energy efficiency, computing-in-memory (CIM) has been extensively 

investigated across the full computing stack. Underlying the proliferation of various CIM 

schemes is to implement two kinds of computing primitives: logic gate or multiply-accumulate 

(MAC) operation. By observing the input and output in either operation, CIM technologies 

differ regarding how memory cells participate in the computation process. This divergence has 

led to conceptual complexity and vagueness that prevent a clear overview of the prevalent CIM 

schemes, each under intensive study in different stack levels such as semiconductor device, 

circuit design, architecture and system. Here, by identifying the degree of memory cells fused 

in the computation as inputs and/or output, we propose a full-spectrum classification of all CIM 

technologies, which is agnostic to the memory devices that could be mature or emerging, 

volatile or non-volatile, capacitive or resistive. Detailed principles are elucidated for standard 

CIM technologies across the spectrum. It provides a platform for comparing the advantages and 

disadvantages, evaluating the challenges, and conducting benchmarking of various CIM 

technologies. Additionally, such a taxonomy should inspire more CIM schemes by applying the 

spectrum to different memory devices and computing primitives. 
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Introduction 

Modern computers have been very successful, thanks to their fundamentals including the 

universal Boolean logic gates, the continuous down-scaling of transistors, and the classic 

architecture that separates the processing and storage of data, thus allowing for the dedicated 

upgrades of each part. During the past decades, driven by Moore’s law, the performance of 

processors has been dramatically improved. As the volume of data rapidly increases, as well as 

the adoption of data-centric computing (e.g. machine learning), the transfer of data between the 

two physically-separated units becomes highly costly, which dominates the overall latency and 

energy consumption1. On the other hand, despite the universality and robustness, computation 

with traditional logic gates is considered inefficient, consuming many resources for arithmetic 

calculations, such as multiplication, addition, and non-linear functions2. It becomes even 

resource-intensive to increase the computational parallelism by building many cores at the 

underlying hardware level.  

To solve the communication bottleneck issue, in recent years, computing-in-memory (CIM) 

technologies have been actively investigated3-5. CIM is closely related to other concepts that 

include in-memory computing and processing-in-memory6, and a sub-field is sometimes 

termed logic-in-memory7. The basic idea of CIM is to move data computations to the memory 

unit where they are stored, thus realizing in situ computing and eliminating the bandwidth 

limitation, and the data movement cost. It usually exploits physical laws, such as Kirchhoff’s 

current law (KCL) and charge sharing in the memory array for analog computation, 

demonstrating efficient computing primitives including logic gate and MAC. Furthermore, the 

crosspoint random-access memory (RAM) architecture allows natural fan-outs that facilitate 

massive computational parallelism. These advantages of CIM have opened multiple novel 

research directions to pursue computer performance improvement in the post-Moore era and to 

build computing accelerators for prevailing applications such as artificial intelligence8 (AI). 

Research on CIM occurs at various levels along different dimensions, ranging from 

fundamental electronic devices to high-level architectures and large-scale systems, from mature 

silicon-based memories to emerging resistive memories. Despite bearing the same name, the 



underlying principles of CIM technologies vary significantly in essence, depending on (1) 

whether all or part of the input operands are provided in situ by the memory cells, (2) whether 

the computation is finalized with the re-storage of the output in situ in the memory cell, (3) 

whether the input/output data are volatile or non-volatile, and (4) whether the input/output data 

are represented in the same physical manner. Such disparities hinder an inclusive but 

comprehensive insight into CIM technologies. In this Review, we present a full-spectrum 

classification of the prevalent CIM technologies. By abstracting the computing primitives as a 

two-input (X and Y), one-output (Z) operation, and according to the degree of memory cells 

participating in the computation, a full spectrum of CIM technologies is established. Memory 

cells may provide the inputs, re-store the output, and even perform the non-linear activation. 

Consequently, the spectrum ranges from the XYZ-type where all operands reside in the memory 

cells, to the O-type, where no memory cell is involved in the computation. This Review 

provides a unified view for assessing all CIM technologies as a continuum to analyze the 

advantages and disadvantages of each, thus supporting the capability exploration and 

development of CIM without ambiguity. 

Computing primitives 

MAC is the atomic operation of computer arithmetic, and it is related to the foundational 

Boolean logic gate in a way explained in Fig. 1, where we propose a diagram illustrating their 

relationship through the concept of artificial neural network (ANN) based on vector/matrix 

arithmetic, in the sense of both traditional computing and CIM. In von Neumann computer, all 

operations rely on the functionally complete set of logic gates, which in turn are built with 

complementary metal-oxide-semiconductor (CMOS) transistors. The logic gates are then used 

to build processing cores for arithmetic computations, among which the most important is the 

MAC operation. The scalar MAC operation is then extended to carry out vector/matrix 

arithmetic by sequential processing or parallelization with multiple cores, thanks to the regular 

form of matrix algebra. Finally, matrix lays the cornerstones for a plethora of algorithms, among 

which ANNs (and deep learning) are the highly concerned ones that draw the most attention 

nowadays. Conversely, in the case of CIM, the idea starts from the MAC operation with the 

embedded circuit physics, which lays the basis for logic gates, through the concept of ANN-



based threshold logic, which, in turn, is achieved through vector operations. Either parallel 

MAC or logic gate may be performed along one column in the memory array (Fig. 1b), although 

the former constitutes the basis for the latter in this context. 

Fig. 1b illustrates a typical CIM architecture, which contains multiple memory banks, each of 

which, in turn, is composed of several memory array tiles (MATs). The memory array is 

organized as the random-access architecture, the workplace of most memory technologies 

across the traditional memory hierarchy, and almost all emerging memory technologies9. It is 

constructed by intersecting horizontal wordlines (WLs) and vertical bitlines (BLs). A memory 

cell is placed at each crosspoint position for data storage, which could be a single-bit or multi-

bit value. In Fig. 1c, the common memory devices considered for CIM are illustrated, and 

categorized as volatile memory (VM) and non-volatile memory (NVM). Dynamic RAM 

(DRAM) and static RAM (SRAM) are mainstream memory products in modern computers10,11. 

They use charges in the constitutive capacitor or the parasitic gate capacitor for information 

storage and thus are volatile. Most emerging NVM memory concepts can be recognized as 

resistive memory, as they use the resistance attribute of the device for data storage12, including 

resistive RAM (RRAM), phase change memory (PCM), magnetoresistive RAM (MRAM), and 

ferroelectric tunnel junction (FTJ). They are two-terminal (passive 1R) devices and can be 

naturally placed in the so-called crossbar array architecture. However, for reliable device 

operations in the integrated array, such as precise writing and mitigating sneak current path, a 

common solution is to connect a transistor in series to each device, forming the 1T1R cell 

structure. Flash memory is conventionally regarded as a charge-based device. However, in CIM, 

Flash works as a resistive memory whose resistance is determined by the stored charge (thus 

the threshold voltage) and the externally applied gate voltage, thus contributing to the physical 

MAC and vector/matrix arithmetic with the NOR type13. The situation is the same for the 

ferroelectric field-effect transistor (FeFET)14, where the polarized charges in the ferroelectric 

layer affect the channel conductivity, thus determining the device resistance. 

While allowing for random access to any memory cell in the array, this architecture is also 

beneficial for CIM, which is made possible by simultaneously activating multiple WLs and 



BLs. For this purpose, besides the conventional WL/BL peripheral circuits for memory 

operations, additional modules are required for CIM, typically including instructions for 

simultaneous activation of multiple WLs, WL drivers for inputting analog voltages, and BL 

sensing circuits for the readout and conversion of analog outputs. The preliminary of CIM is 

based on parallel MAC associated with specific physical laws in the array. Upon activating 

multiple WLs, the current or potential on one BL is the dot product of vectors resulting from 

the interaction between the WL voltages and the memory cells, which implements parallel 

MAC operations. It is easily generalized to multiple columns to perform matrix operations, e.g., 

matrix-vector multiplication (MVM)15. The implementation of parallel MAC provides a 

workhorse for accelerating some important algorithms, where neural networks are dominant16-

23, and other problems include Ising machine24,25 etc. The same principle may also be used for 

content-addressable memory applications26-30. On the other hand, the parallel MAC result on 

the BL could be an intermediate result, which will be combined with a non-linear activation 

function to perform a logic gate, namely threshold logic. The non-linear function can also be 

met by hardware components, such as a CMOS inverter31, a latch circuit, and an abrupt resistive 

switch32. The implementation of logic gates in CIM is about to develop a functionally complete 

logic set, based on which computational blocks, e.g., adder and multiplier, are built to support 

general-purpose arithmetic operations33-38. Compared to the CMOS logic gates, the benefits of 

CIM counterparts include the capability of fusing computation in the memory array, and the 

massive computing parallelism offered by the crosspoint RAM architecture. Since CIM logic 

gates rely on analog computing with physical laws, any linearly separable logic functions may 

be carried out in one operation. As a result, complicated logic functions, e.g., 1-bit full adder, 

can be conveniently achieved with reduced number of operations and hardware cost. 

A full spectrum of CIM technologies 

The two computing primitives can be abstracted as an equation Z=X·Y, where the dot 

symbolizes the algebraic function. For dot product, X and Y represent the stored weight vector 

and the input vector, respectively, and Z is the scalar output. For logic gates, X and Y are two 

input operands, and Z is the logic output. Based on this assumption, a spectrum of CIM 

technologies is proposed. According to whether X and Y are provided by memory cells, and 



whether the output Z is re-stored in a memory cell at the end of the computation, CIM is 

identified as six categories. Fig. 2 shows such a full-spectrum classification, together with the 

typical memory technologies that have been reported for each CIM type, the solved computing 

primitives, and the targeted applications. 

(1) XYZ-CIM: both X and Y are provided by the memory cells in the array and the output Z is 

also re-stored in a memory cell. The computation relies on the implicit readout of X and Y, 

thus modifying the BL potential, which eventually rewrites the output cell. XYZ-CIM is 

typical for Boolean logic operations, which have been implemented with single-bit non-

volatile RRAM32,39-41, PCM42, MRAM43,44, and volatile DRAM45-47. 

(2) XZ-CIM: only one input operand is residing in a memory cell during computation. The 

other input is encoded by the externally applied voltage, and the output Z is re-stored as a 

single-bit cell state at the end. XZ-CIM only applies to NVM-based logic operations, and 

typical memory technologies include RRAM48 and MRAM49. 

(3) Z-CIM: only the output Z is stored in the memory cell, and the inputs are provided through 

the BL and WL. By considering all possible combinations of BL and WL voltages, the 

resulting single-bit cell states constitute a logic gate. Z-CIM has been implemented with 

NVMs, such as RRAM50-52, MRAM53, and PCM54. 

(4) XY-CIM: both input operands X and Y are provided by memory cells, while the output Z is 

obtained at the BL sense amplifier (SA). It applies to logic operation as well, and the 

memory technologies could be resistive NVMs55,56 or SRAM57,58. It works on based on 

parallel readout of two single-bit memory cells and the result is sensed and discretized to a 

binary output. 

(5) X-CIM: only input X is provided by memory cells along one column in the array, Y is 

represented by the external voltages applied to WLs, and the output Z is obtained at the BL 

periphery. Different from the above-mentioned types of CIM, X-CIM usually aims to 

perform the dot product of two vectors in a highly parallel manner. It has been implemented 



with all memory technologies16-23, including single-bit or multi-bit NVMs, and single-bit 

VMs, which forms positive feedback to backward flourish its research. 

(6) O-CIM: there is no interaction of memory cells here, rather conventional logic gates or 

computational blocks are located close to memory cells or arrays for carrying out 

computations. O-CIM is usually designed with mature memory technologies59-61, including 

SRAM and DRAM. It resembles the earlier concept of computing-near-memory but 

advances to further cut down the memory-processor distance. 

The spectrum based on this taxonomy should cover all CIM technologies, thanks to the clarity 

of a comprehensive identification of the sources of inputs and the orientation of output. Beyond 

the end of the spectrum, it contacts the conventional von Neumann paradigm. Across the range, 

a given memory technology may have been used in multiple types of CIM, but with different 

principles. On the other hand, some kinds of CIM may only be technically possible or worthy 

of interest with specific memory devices. Additionally, the computing primitives are related to 

the CIM types and eventually the memory vehicles. Except for the O-CIM, all other CIM types 

rely on analog multiplication, addition, and non-linear activation with physical laws in the 

circuit. Combining the former two operations results in the dot product for parallel MAC 

operations, and combining all three dictates Boolean logic gates. 

Principles of CIM technologies across the spectrum 

XYZ-CIM, XZ-CIM, and Z-CIM are common in the sense that the output Z is in situ stored in 

the memory cell. They all perform logic operations, mainly using emerging NVMs. Since the 

emerging NVMs are generally resistance-based memory, they are considered as a generic two-

terminal resistive switching (RS) device, as shown in Fig. 3a. Typically, when the voltage across 

the device is sufficiently large with positive or negative polarities, it is switched to the high 

conductance state (HCS) by ‘set’ or the low conductance state (LCS) by ‘reset’, respectively. 

This description holds for RRAM, MRAM, and FTJ. Since only one switching polarity is 

usually used for CIM, the unipolar switching PCM can also be included in this model. The two 

conductance states encode the binary ‘1’ and ‘0’ as in conventional memory applications. For 

logic gates, the computation relies on the conditional switching of the device, as a function of 



the states of other devices and the applied voltages. Such a non-linear characteristic can be 

viewed as an activation function in ANNs32. Consequently, it is possible that any RS-based 

NVM device could be employed for the three types of CIM. 

NVM stateful logic of XYZ-CIM. Among the XYZ-CIM proposals, a prominent approach is 

based on the so-called stateful logic39, achieved with NVM devices, typically RRAM. The 

implication (IMP) gate was originally proposed for stateful logic operations, as shown in Fig. 

3b. The conductance state of one RRAM cell encodes the input operand X, while the other cell 

represents both input Y and output Z before and after the operation. The resistor’s conductance 

is set approximately in the middle of the logarithmic values of LCS and HCS. The two WLs 

are applied with Vp (e.g. Vw/2) and Vw, respectively, where Vw is sufficiently large for a set 

transition but Vp is not, while the BL resistor is grounded. Upon activation, the final state of 

cell Y, i.e., the output Z, is determined according to the IMP function. Specifically, if Y is 

initially in the HCS (‘1’), the applied voltage polarity will not trigger the switching. If Y is 

initially in the LCS (‘0’), its switching is conditional on X: if X is in the LCS, the BL potential 

will be close to 0 due to the isolation by the two LCS devices. Hence, the voltage drop across 

device Y is sufficient to switch it to HCS; if X is in the HCS, however, the applied voltage Vp 

will contribute significantly to raising the BL potential, thus preventing the switching of Y. 

In Fig. 3c, a generic model of RRAM stateful logic is presented from the viewpoint of ANN, 

emerging the concept of stateful neural network (SFNN)32. This model uses two RRAM cells 

as inputs and one as output. Three WLs are applied with analog voltages (VX, VY, and VZ) that 

are calculated to determine the logic gate. The grounded BL resistor can be viewed as a parallel 

device applied with zero voltage. According to KCL, this circuit turns out to be a single-layer 

perceptron network, where the inputs are the conductance states (conductance 𝐺𝑖) of X and Y, 

the output is the final conductance state of Z (initialized as LCS), the weights are determined 

by the applied voltages, namely 𝑤𝑖 = 𝑉𝑍 − 𝑉𝑖 − 𝑉𝑠𝑒𝑡, with 𝑖 representing devices X, Y, and 

BL resistor. The non-linear activation function in this model is provided by the set transition of 

device Z that mimics the hard-limit function, namely 𝑍 = {
1, ∑ 𝑤𝑖𝐺𝑖𝑖 ≥ 0

0, ∑ 𝑤𝑖𝐺𝑖𝑖 < 0
. Based on SFNN, 

any linearly separable logic function can be performed with the circuit. Fig. 3c shows two 



examples of NOR and NAND logic gates. Linearly inseparable functions such as XOR and 

one-bit full adder can be solved using a two-layer SFNN by cascading two operations of the 

circuit. The SFNN concept can be extended to the case where the output device is initialized as 

HCS and the BL is floating, resulting in another important stateful logic proposal, namely the 

MAGIC that performs the universal NOR logic40. The stateful logic concept is applicable to 

various NVM devices, and it has been extended to PCM42 and MRAM43,44. 

DRAM bitwise logic of XYZ-CIM. DRAM bitwise logic is another important XYZ-CIM 

proposal, relying on the latch-type SA simultaneous rewrite during the computation. It can be 

realized with the commercial DRAM product with little or even no modifications45,46. Fig. 3d 

shows a column of three DRAM cells, with a latch-type SA at the end of the BL. The SA is a 

bi-stable circuit consisting of two CMOS inverters that form a positive feedback loop. The 

terminal connected to the BL acts as both the input and output node, through which the BL 

voltage is sensed and modified. When the BL voltage is higher (or lower) than VDD/2, the SA 

quickly responds and stabilizes the output at VDD (or 0). For logic operations, multiple rows are 

activated simultaneously. As a result, the circuit naturally performs the Majority logic function 

of the three-input cells, and the logic result is eventually re-stored in all three cells. 

The BL is pre-charged to VDD/2 in the first step to implement the bitwise logic. Then, three WLs 

are simultaneously activated with VDD, while the SA is yet to be activated. The charges stored 

in the DRAM cells X, Y, and Q are shared among all DRAM capacitors (capacitance 𝐶𝐶) and 

the parasitic BL capacitor (capacitance 𝐶𝐵  ), resulting in the BL potential 𝑉𝐵𝐿 =

𝑘𝐶𝐶𝑉𝐷𝐷+𝐶𝐵∙
1

2
𝑉𝐷𝐷

3𝐶𝐶+𝐶𝐵
, where k = 0, 1, 2, 3 is the number of cells at state ‘1’. Depending on the k value, 

𝑉𝐵𝐿 might be higher or lower than VDD/2. Specifically, if k=0 or 1, there is 𝑉𝐵𝐿 < 𝑉𝐷𝐷/2, then 

upon the enablement of SA, the BL voltage is sensed and driven to be 0. If k=2 or 3, there is 

𝑉𝐵𝐿 > 𝑉𝐷𝐷/2 , then the BL voltage will be driven to be 𝑉𝐷𝐷  by SA. Finally, following the 

Majority function, the stabilized BL voltage rewrites all three cells to a ‘0’ or ‘1’ state 

accordingly. By fixing the input Q as ‘1’ or ‘0’, the Majority circuit is reduced to the two-input 

AND or OR logic gate. 



The Majority is a linearly separable logic function, and the DRAM circuit can be viewed as a 

single-layer perceptron, similar to the SFNN. In this model, the inputs are the stored voltage 

levels, the network weights are given by the capacitances, and the non-linear activation neuron 

is enabled by the latch-type SA whose threshold is VDD/2. Based on the Majority gate, more 

complicated functions, e.g., full adder, can be conveniently realized47. To enable a complete set 

of logic gates, the NOT gate can be designed by taking advantage of the complementary bit in 

the SA, which is written to a dual-contact cell through another select transistor45. In contrast to 

SFNN where all inputs are reserved, DRAM bitwise logic is destructive to logic inputs. To 

solve this issue, three rows in the array can be specially designed for logic operations. 

Additionally, before and after the logic operations, the RowClone operation62, which copies 

data in a source row to a destination row by using the same charge sharing principle, should be 

performed to transfer the inputs and outputs within the array. 

XZ-CIM. XZ-CIM also relies on the conditional switching of NVM devices, such as RRAM48 

and MRAM49. While stateful logic is conditional on the conductance states of two input 

memory cells, the two inputs for conditioning in XZ-CIM are represented by conductance state 

and voltage, respectively. Such an encoding method offers more convenience for constructing 

logic gates and enables one-step operation of the linearly inseparable functions such as XOR, 

but raises the cost of converting the heterogeneous attributes of input and output for cascading. 

A typical XZ-CIM logic gate based on two RRAM cells is shown in Fig. 3e. One input operand 

X is provided by an RRAM device conductance state, whereas the other input Y is encoded as 

the applied voltages48. The output is re-stored in the second cell that is initialized at the LCS 

(‘0’). The BL load resistor’s conductance is set between the LCS and the HCS, for appropriate 

voltage dividing. The output memory cell is applied with a constant voltage Vp subject Vset/2 

<Vp < Vset, and then the voltages applied to WL1 and BL dictate the kind of logic gate. In the 

case of XOR, the WL1 and BL voltages are (Y-1)Vp and (-Y)Vp, respectively. By changing the 

encoding scheme of the applied voltages, all 16 two-input Boolean logic gates can be realized 

with this circuit, which could be used to simplify the logic synthesis of complicated functions 

and thus reduce the latency of CIM. 



Z-CIM. The NVM-based logic can be extended to Z-CIM, where both input operands X and Y 

are provided by applying voltages. The output Z is stored in situ as the conductance state of the 

memory cell (Fig. 3f). RRAM has been the most actively investigated object for Z-CIM50-52, in 

addition to MRAM53 and PCM54. It is essentially based on the conventional write operation of 

NVM, but with logic extensions to other input combinations traditionally considered ineffective. 

The RRAM switching depends on the polarity of the voltage drop and the initial conductance 

state. When the memory cell is initially in LCS (Z0=‘0’), only the input combination of X=‘1’ 

(Vw) and Y=‘0’ switches the device to HCS, i.e., Z=‘1’, and in other input cases, the device 

remains at LCS (Z=‘0’). When the memory cell is initially in HCS (Z0=‘1’), only the 

combination of X=‘0’ and Y=‘1’ (Vw) turns the device off, storing Z=‘0’, and in other cases, it 

remains at Z=‘1’. The two situations correspond to the non-implication (NIMP) and the 

complementary implication (CIMP) functions. By fixing one input as ‘1’ or ‘0’, or by 

interchanging the operands applied to WL and BL, and cascading such operations, all the 14 

linearly-separable logic gates can be implemented with the memory cell. The linearly 

inseparable XOR/XNOR are exceptional. To make them viable, the complementary RRAM 

concept based on stacking two resistive switches with opposite polarities should be used, by 

exploiting its asymmetric readout process50. Alternatively, the 1T1R cell can perform the XOR 

logic of Z-CIM more efficiently, thanks to the more terminals of the structure that facilitate 

convenient input operands encoding63. 

XY-CIM. XY-CIM has been proposed for logic operations as well, based on NVMs or SRAM. 

In the case of NVM55,56, the two input operands are the binary conductance states (LCS or HCS) 

of memory cells. Basically, any NVM device featuring two distinct resistive states can be used 

for XY-CIM, including the intrinsic three-terminal devices such as FeFET64. As shown in Fig. 

4a, upon the simultaneous activation of two WLs, the memory cell states are read out to BL, 

where the currents (ILCS or IHCS) are accumulated and sensed by a current-mode SA. The SA 

can be viewed as a binary neuron circuit to produce the logic output, with a reference current 

as the activation threshold. The four combinations of two inputs result in three distributions of 

BL currents centred at 2ILCS, ILCS+IHCS, and 2IHCS. Consequently, setting a threshold between 

2ILCS and ILCS+IHCS (or between ILCS+IHCS and 2IHCS) for the SA gives the linearly separable OR 



(or AND) logic function. Given the neuronal activation is implemented with a CMOS circuit, 

it is convenient to have the inverses of the two logic gates, namely NOR and NAND. The 

combination of OR and NAND will result in the linearly inseparable XOR logic, obtained by 

applying successively two reference currents.  

In the case of SRAM, the two input operands of XY-CIM are provided by the voltage levels 

stored in SRAM cells. The logic operation relies on sensing the voltage change of the pre-

charged BL57 (Fig. 4b). The core of an SRAM cell is a bi-stable circuit, whose two internal 

nodes store a binary voltage level and its complement. In the standard 6T SRAM structure, two 

select transistors control BL and the complementary BLB to access the two nodes. For logic 

operations, both BL and BLB are firstly pre-charged to VDD, as in the SRAM readout process. 

Upon the simultaneous activation of two WLs, BL and BLB may discharge, depending on the 

states of the two SRAM cells. Specifically, only if both inputs X and Y are ‘1’, the BL remains 

at VDD. If there is a cell at state ‘0’, BL discharges to a lower voltage. In the case of both cells 

at state ‘0’, the BL voltage reduction is intensified. The SA output is recognized as the AND 

logic result by setting a reference voltage for the SA to distinguish VDD from other reduced BL 

voltages. As the BLB accesses the complements of input bits X and Y, the SA adopting the same 

reference voltage delivers the NOR logic. Again, the combination of AND and NOR contributes 

to the XOR logic65. The bitwise logic operations with conventional 6T SRAM suffers from the 

disturbance of memory cells, due to the coupled write and read routes through the same port. 

When multiple WLs are simultaneously turned on, the BL/BLB might be discharged, which 

may, in turn, flip-flop the memory cell states. To overcome this issue, a main strategy is to 

decouple the write and read routes by adding access transistors or modifying their 

configurations, forming the 4+2T/8T/10T SRAM structures65-67. Furthermore, under-driven or 

asynchronous activation of WLs may also help solve the disturbance issue67,68. 

X-CIM. The underlying physical principle of X-CIM is fundamentally identical to XY-CIM, 

except for the different definitions of the input operands. Usually, X-CIM targets the 

implementation of parallel MAC operations, where one input operand is provided by a column 

of memory cells that represent a weight vector x, and the other input is a vector y of voltages 



externally applied to WLs or other lines. Consequently, the dot product of the two vectors is 

generated on the BL, in the form of an accumulation of currents or discharges, which is then 

sensed by the BL peripheral circuit. The intense interest in ANN accelerators has driven all 

memory technologies listed in Fig. 1c to be used for X-CIM16-23, which is under active 

research69-75, with efforts towards analog/digital hybrid, floating-point precision schemes76,77. 

Note that X-CIM may also imply logic operations, based on NVMs such as MRAM78 and 

FeFET79. The efforts in this respect, however, have been overshadowed by the enormous 

volume of work on parallel MAC operations for AI accelerators. 

Figs. 4c-4f list several X-CIM schemes with representative memory technologies. Fig. 4c 

presents the most straightforward case of a two-terminal NVM device, which is typical for 

RRAM and PCM. Each element of the weight vector x is encoded as a device conductance, and 

each y element is a sufficiently low voltage applied to the device. Based on Ohm’s law and 

KCL, the current sensed at the BL represents the dot product xTy. In the case of 1T1R structure 

that is widely adopted for NVMs, including RRAM, PCM, MRAM and FTJ, there is one more 

set of source lines (SLs) in the array, which offers another terminal for the dot product operation 

(Fig. 4d). The vector y may be applied through WLs or SLs, with the other set of lines being 

concurrently activated but encoding no information16,80.  

In NOR Flash-based X-CIM (Fig. 4e), each x weight element is represented by the amount of 

charge stored in the floating gate, which determines the channel conduction characteristics. 

Again, the input vector y may be applied through WLs or SLs. In the former case, the floating-

gate transistors are used as gate-coupled programmable current mirrors, in combination with a 

column of input devices. The weight values are defined by the equivalent gate voltages of the 

transistors in the sub-threshold regime21,81. In the latter case, the floating-gate transistor is 

basically used as a programmable resistor in the Ohmic regime, whose conductance is related 

to the threshold voltage of transistor82. The latter principle should be applicable to FeFET-based 

X-CIM as well20. NAND Flash memory violates completely the random-access architecture, 

with memory cells being serially connected in a column, thus vitiating this X-CIM principle. 

With memory cell modifications, however, it has been proposed that the summation of voltages 



or resistances can also lay the basis for dot product operation, with Flash memory or MRAM83,84. 

On the VM side, SRAM has drawn much attention for parallel MAC acceleration with X-CIM, 

thanks to its unique advantages and industrial maturity, including fast read/write speed, low 

power, unlimited endurance, and compatibility with the state-of-the-art logic process, albeit at 

the expense of large cell footprint. Fig. 4f shows a typical SRAM-based X-CIM scheme, where 

the weight vector x is stored as the voltage levels in the latch circuits, and the input vector y 

consists of WL voltages as usual23. Then, discharging the pre-charged BL to a certain level 

represents the dot product of the two vectors. Notably, in the latch circuits, the complement 

binary vector of x is also included, which would be an asset for signed computations. SRAM 

structure is of rich flexibilities for reliable, efficient X-CIM optimizations, but the 4T latch 

circuit always remains the core for weight storage. One strategy is to decouple the readout route 

to protect the SRAM cell from disturbance, by adopting the 8T/10T/12T structure85-88, which, 

however, even aggravates the cell footprint issue. In several schemes based on the standard 6T 

SRAM array89, specially designed local computing units and global bit-lines have been included, 

thus, to balance the trade-off between circuit functionality and area overhead. 

Depending on the memory technology, the weight vector x stored in memory cells could be 

single-bit or multi-bit, as illustrated in Fig. 4g. While VMs are generally single-bit devices, 

many NVMs show multi-bit and even analog states, which is a key enabler for enhancing the 

X-CIM throughput that is highly desired for machine learning accelerations. Flash, FeFET, 

PCM, RRAM, and FTJ are excellent analog conductance devices, thanks to their fundamental 

physics that allows for continuous tuning of state variables such as charge storage, ferroelectric 

polarity ratio, crystalline volume, and conducting filament diameter12. Accordingly, these NVM 

devices show large memory windows, ranging from 10 to 106 that allow to accommodate multi-

bit information stored in one single cell90,91. Due to its small conductance switching ratio, 

MRAM is considered a single-bit memory, although there are undergoing efforts to develop 

multi-bit devices92. To maximize computing efficiency, input vector y is usually encoded as 

multi-bit values such as WL voltage pulses with analog magnitude or width23,93, although serial 

binary pulses might be adopted to save the data conversion cost94,95. As a result, the CIM 



operation is carried out in the current domain, time domain, or charge domain. Given that both 

x and y might be binary or analog values or bipolar values enabled by the differential operation, 

the multiplication of two elements might be in the form of AND logic, bipolar XNOR, or purely 

analog result (Fig. 4h). Due to the multi-bit inputs, and the simultaneously activated multiple 

WLs (typically >>2), sensing of the dot product requires a conversion circuit that quantizes 

many discrete output levels (Fig. 4i), which is usually achieved with a multi-level SA or analog-

to-digital converter (ADC). SA and ADC are usually much larger and more power-intensive 

than memory cells. Therefore, along with the in situ computing and the inherent parallelism of 

X-CIM, otherwise SA or ADC has become another efficiency bottleneck, requesting design 

optimizations to maintain the performance improvement offered by CIM96. 

NVM-based X-CIM may also stay in the analog domain through readout with transimpedance 

amplifiers (TIAs), for fully-analog cascading of computations97. Specifically, by storing a 

weight matrix X as analog conductance in a memory array, and upon the application of the input 

voltage vector y, the outputs of TIAs give the MVM result, namely z = XTy (Fig. 4j). Along 

with MVM, other basic matrix operations can be accelerated with crosspoint NVM arrays. Fig. 

4h shows the matrix inversion circuit that solves a system of linear equations Xz = y, which is 

exactly the inverse problem of MVM. A set of negative feedback operational amplifiers (OPAs) 

connect the crosspoint WLs and BLs one-to-one, forming a closed-loop circuit98. It can provide 

the solution z = X-1y in one computational step, which is represented by the BL voltages. This 

concept has been extended to solve matrix eigenvectors and generalized inverses98,99. 

O-CIM. Recently, SRAM-based CIM has progressively shifted to the fully digital domain, by 

incorporating conventional logic gates in the vicinity of memory cells. As there is no fusion of 

memory cells during the computation process, it is reasonably termed O-CIM. In this approach, 

one input operand is provided externally through a specially designed line, and the other input 

is read out from a SRAM cell and fed to the neighbouring logic gate, which carries out the 

multiplication of the two operands. To sum up the multiplication results, a hierarchy of adder 

trees must be deployed nearby, producing partial sums in the digital domain60. In the case of 

DRAM, rather than embedding individual logic gates around memory cells, conventional 



computational blocks are built close to the arrays, thus utilizing the array-level parallelism for 

MAC acceleration61. O-CIM is usually designed with mature volatile memories, to seek 

industrial compatibility with contemporary commercial products100. By incorporating standard 

digital computing units, O-CIM is also more reliable than other types of CIM based on analog 

computation. 

Discussion 

CIM is a disruptive technology over the traditional von Neumann computer in two aspects, 

namely fusing memory and computing, and providing spatial parallelism for computing 

acceleration. Also, it may enable highly efficient computations by utilizing unconventional 

while powerful logic gates, e.g., the Majority function101, or by mapping directly the arithmetic 

operations to hardware circuits. Compared to the conventional memory mode, CIM is enabled 

by simultaneously activating multiple WLs to initiate the interaction of memory cells through 

physical laws in the array. To do so, many CIM technologies have been developed, majorly 

based on the crosspoint array architecture that accommodates almost all memory technologies. 

Emerging NVMs have been the initiators and important candidates of CIM39, allowing for the 

unrestricted exploration of beyond-memory applications. Conversely, mature memory 

technologies such as SRAM and DRAM, favor fewer modifications. DRAM has been highly 

optimized for storage density and leakage reduction, thus disfavoring process modifications, 

albeit the CIM causes merely an overhead of less than 1% in the array45. SRAM is more 

advantageous in terms of its flexibility in the modern logic fabrication process that allows for 

customized memory array designs, although the standard 6T SRAM is fairly appreciated89. 

By elaborating on the fundamental principles of CIM technologies, the spectrum proposed in 

this Review provides an overview of different types of CIM in a parallel manner. In Table 1, 

we summarize the main features, advantages and disadvantages, as well as challenges regarding 

device reliability and computing efficiency. In the CIM paradigm, logic gates are developed to 

provide a functionally complete logic set for universal computations, while parallel MAC is 

developed for accelerating specific applications such as neural networks. Among the different 

CIM schemes for logic gates, there are two factors that distinguish each other, namely 

depending on whether the computation (i.e., nonlinear activation) is performed by a passive RS 



cell, and whether the physical attributes of input and output operands are identical. In the former 

situation, while the implementations of NVM stateful logic, XZ-CIM, and Z-CIM that use a RS 

cell as a neuron are highly compact, the DRAM bitwise logic and XY-CIM scheme requiring 

an additional active SA for computation sacrifices some of the area efficiency. In the latter 

situation, XYZ-CIM is considered a real CIM paradigm, as all input/output operands are 

represented in situ by memory cells in the array102. It is free of a conversion process, thus 

enabling easy cascading and benefitting the overall latency of sequential processing. By 

contrast, XZ-CIM, Z-CIM, and XY-CIM of NVMs require additional operations to read out the 

output as voltage (or to write the output as conductance) for cascading next logic gate, causing 

a delay that hinders the throughput improvement. In the case of SRAM, a special unit might be 

designed to write the logic output in a cell for succeeding access67. 

X-CIM and O-XIM are both used for parallel MAC, but in totally different manners, that is 

analog vs digital103. The advantages and disadvantages of each scheme are obvious. X-CIM is 

able to deliver high energy/area efficiency, thanks to the efficient way of direct mapping of the 

computing primitive to the memory array. However, also due to the analog nature of the 

computing process, it suffers from the accuracy degradation caused by non-idealities of device 

(e.g., resistive cell, capacitor, or transistor), array, and circuit. It is also possible to increase the 

resolution of input, memory capacity of NVM, and the parallelism of CIM cells within one 

operation, to significantly improve the computing throughput. However, such a benefit comes 

with a remarkable overhead of DAC for input and ADC for output. In X-CIM of NVMs, neural 

networks have been a well-posed application, where the MVM can be naturally cascaded thanks 

to the stationary weight matrices between every two layers of neurons. For general-purpose 

applications, due to the isolation of one vector in the memory cells, attribute conversion 

processes may be required for operation cascading as in the logic gate cases. O-CIM works in 

the digital domain with conventional CMOS logic gates, hence it affords much more robust 

computations. Also, because of the elimination of ADC and DAC, the data conversion burden 

is overcome. Contrary to analog X-CIM where the mapping to hardware is fixed, digital O-

CIM has a higher flexibility to be accommodated for a wider range of problems. Nevertheless, 

it has traded off the area and energy efficiencies, as each processing element consists of a 



multiplier and an adder for MAC operations104, which actually resembles other digital 

accelerators such as systolic array-based designs. 

Among the CIM types for logic operations, NVM stateful, XZ-CIM, and Z-CIM rely on the 

dynamical RS of memory cell, thus desiring high endurance of device to support the frequent 

logic gate operations105. As such, PCM, whose endurance has been reported to be >1010, appears 

to be more suitable (though not enough yet) for these kinds of CIM. RRAM, whose state-of-

the-art endurance is quite limited, >106, must be significantly improved to be qualified106,107. 

MRAM performs even better, generally showing an endurance of 1012. However, it is 

intrinsically limited by the small memory window that presents a barrier for reliable analog 

computing, especially for multi-input logic gates108,109. Since XY-CIM and X-CIM are basically 

a parallel readout process of two or more cells, any memory device featuring two or more 

distinct states could be employed. Consequently, the temporal retention property and state 

variations of NVM devices should be good enough to guarantee reliable readout, summation, 

and discretization by SA or ADC for logic operation or parallel MAC, respectively. Although 

NVM devices generally show sufficient retention (>10 years at 85℃) for traditional binary 

memory application106, the linear superposition of two or more cell states in logic operation 

should impose more strict restrictions on the retention performance. Particularly, in X-CIM for 

parallel MAC, it is highly desired to have a multi-bit cell, and usually multiple cells are 

simultaneously activated to achieve an enhanced throughput. In this context, all NVM devices 

except for MRAM show large memory windows, enabling the multi-bit storage. Because of the 

critical limitation by state variations, however, the state-of-the-art NVMs can only deliver 

reliable 2-bit capacity, as summarized in a recent excellent Review paper110. Therefore, there 

remain a large space for device optimizations to achieve higher capacity of a memory cell, 

where the mature multi-level NAND Flash could be a good reference111. Note that the analog 

conductance of NVMs has been excessively utilized for computations in many cases, to achieve 

high equivalent throughputs and energy efficiencies for typical applications such as AI 

accelerators. However, one emphasis should be reiterated that the conventional memory mode 

should always be preserved, where the multiple states should be distinguishable with sufficient 

readout margins. To develop reliable resistive NVM-based CIM technologies, there have been 



a large number of efforts at the algorithm and system levels, which, however, are usually limited 

to specific applications112-114. Strategies such as bit slicing, divide-and-conquer, and 

compensation have been used to extend computing precision in large-scale problems. While 

such solutions are conveniently applicable to the forward matrix multiplications, the problems 

become intractable for the matrix inversions of X-CIM, leaving a space to be explored towards 

the resistive NVM-based general matrix computations. 

The inadequate endurance property of NVM devices represents the major issue of stateful logic, 

XZ-CIM, and Z-CIM, preventing them from moving forward to practical applications. For 

stateful logic and XZ-CIM, since both rely on analog multiplication, summation, and nonlinear 

activation, it is critical to have low cycle-to-cycle and device-to-device variations of set/reset 

voltages, and LCS and HCS, to limit the bit error rate of logic operation. Z-CIM is free of 

analog multiplication and summation, hence it only requires low variations of set/reset voltages. 

By contrast, XY-CIM and X-CIM favor low LCS and HCS variations for reliable CIM 

operations. Particularly, in parallel MAC with multi-bit NVM devices, the conductance 

distributions of input memory cells and then the dot product results become even more 

complicated, necessitating designs of delicate readout circuits (SA/ADC). Additionally, X-CIM 

may be involved in neural network training, it is therefore important to have a good linearity of 

conductance updates towards the minimal or maximal bounds of the conductance range. To 

overcome the challenges of NVM device endurance, spatial and temporal uniformity, and 

update linearity, which are fundamentally controlled by the device physics, it should be 

promising to carry out optimizations in terms of device materials and structures to solve these 

issues at the source115,116. All these CIM schemes rely on analog computation, which would be 

easily disturbed by the process-voltage-temperature (PVT) variations. There have been rare 

investigations into the PVT issue of CIM with emerging NVMs, manifesting a pressing 

challenge towards practical applications117. O-CIM works with mature digital circuit designs, 

such issues have usually been well investigated and thus represent a less concern. 

To maximize the energy efficiency of CIM, several issues should be addressed for these CIM 

schemes. In the RS-based CIM schemes, every event causes a significant amount of power 

consumption, hence optimizations of set/reset voltages and currents are highly demanded. In 



XY-CIM and X-CIM that work with stationary memory cell states, the lower absolute 

conductance of NVM device should help reduce the energy dissipation. That said, such 

optimizations are not easy, as low conductance is usually accompanied with nonlinear current-

voltage characteristics, which would introduce additional computing errors. Therefore, there 

should be a dilemmatic tradeoff to account for both issues. In the synthesis of complicated logic 

operations with a functionally complete logic set, the choice of methods is quite diverse. It 

could be composed of many 2-input gates or few multi-input gates, resulting in a huge 

difference regarding hardware and latency costs, which accompany with different sensitivities 

to analog non-idealities. As a result, there should exist a tradeoff consideration for the reliable 

and efficient logic synthesis. Regarding X-CIM, it has been struggling to deal with the overhead 

of ADC and DAC, which is virtually the major challenge for energy efficiency improvement. 

In O-CIM, while multiplier is convenient to implement by using a single logic gate, e.g., NOR 

gate, the adder tree has been the accepted bottleneck. Therefore, more efforts are greatly 

appreciated in this aspect to improve the energy and area efficiencies. 

Lastly, this spectrum unifies various CIM technologies as a continuum with clear identifications 

of fundamental principles, it is expected to inspire novel research directions and novel, efficient, 

optimized CIM schemes to further enrich the design space. Since it provides a platform for 

model abstraction of all possible CIM schemes, it should also be beneficial to the benchmarking 

of CIM in terms of computational complexity, latency, throughput, and energy efficiency118,119. 

While usually only one type of CIM is considered for a special purpose, integrating different 

types of CIM based on the same memory technology would be a promising alternative to 

combine the advantages while avoiding the disadvantages of each. Additionally, while the 

parallel MAC of X-CIM has been demonstrated with a high potential for computing 

accelerations, it is inherently incapable of a general-purpose computing system. In this context, 

the combination of logic gates and parallel MAC operations in the CIM paradigm would be 

worth more future investments.  
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FIGURE CAPTIONS 

Fig. 1. Computing primitives and CIM basics. a, The ouroboros of computing primitives in von 

Neumann architecture and CIM architecture. In von Neumann computers, the route starts from the 

basic logic gates, delivering arithmetic operations to support algorithms such as ANNs. All these 

computations are executed in the processor, which communicates with the whole memory hierarchy 

to run complete programs. In today’s CIM proposals, the computation is generally based on physical 

MAC operations in the memory unit, by using physical laws for multiplication and summation. The 

physical MAC can be easily parallelized in memory arrays to carry out vector and matrix arithmetic, 

which in turn lay the foundation of ANNs. The ANN concept can be used to perform logic gates, 

where the non-linear activation function can also be realized in hardware. b, CIM architecture, 

including banks of MATs, I/O buffer and controller. In each bank, there are peripheral circuits for 

global communications and local controls. The memory array is based on the random-access 

architecture composed of crosspoint WLs and BLs. c, Memory technologies, including VMs and 

NVMs, all of which can be accommodated in the crosspoint architecture to perform CIM. For some 

memory species like SRAM, the array designs contain complementary BLs. Additionally, with 

memory cell modifications, more complicated array designs might be adopted, such as those with 

dual WLs. 

Fig. 2. A full spectrum of CIM technologies, along with memory candidates, computing 

primitives, and dominant applications in each type of CIM. The spectrum is established based 

on abstracting both parallel MAC (dot product) and logic gate as Z = X·Y, where X and Y could be 

a scalar or a vector, Z is a scalar. All CIM technologies are categorized into six types, ranging from 

all-in-memory to none-in-memory, each of which has been implemented with several NVM and/or 

VM species, for performing logic gates or parallel MAC, which, in turn, target general-purpose or 

specific applications. 

Fig. 3. XYZ-CIM, XZ-CIM, and Z-CIM. a, Schematic of a resistive memory device, and its RS 

behavior. VR is the voltage drop across this two-terminal device. Vset and Vreset mark the threshold 

voltages of set and reset transitions, respectively. HCS and LCS represent the binary ‘1’ and ‘0’, 

respectively. b, Stateful IMP logic of XYZ-CIM. Vp and Vw is an externally applied voltage subject 

to Vp < Vset < Vw. c, SFNN of XYZ-CIM. VX, VY, and VZ are externally applied analog voltages 



that dictate the weight values of this ANN model, thus defining the Boolean logic function. For 

NOR gate, there is VX=VY=0.5Vset, VZ=1.1Vset. For NAND gate, there is VX=VY=0.7Vset, 

VZ=1.35Vset. d, DRAM bitwise logic. Upon the simultaneous activation of three WLs, the final BL 

voltage turns out to be the Majority function of the initial states of the three DRAM cells, which in 

turn rewrite all the three cells. Due to its non-linear transfer characteristics, the latch-type SA acts 

as a perceptron neuron to deliver the linearly separable Majority logic. e, Logic operation of XZ-

CIM. Vp represents logic ‘1’ when implementing the input operand Y. Depending on Y value, a 

combination of voltages is applied to WL1 and BL. This circuit is for implementing XOR logic, and 

the table shows the definitions of the applied voltages for implementing different logic gates. f, 

Logic operation of Z-CIM. Vw is a voltage whose magnitude is larger than both Vset and |Vreset|. 

Depending on the initial conductance state of the memory cell, the application of WL and BL 

voltages may change the device state. The results of four input combinations give a logic function. 

If the initial state is ‘0’ (LCS), the logic function is NIMP. If ‘1’ (HCS), the logic function is CIMP. 

Fig. 4. XY-CIM and X-CIM. a, Resistive NVM-based logic operation of XY-CIM. Vr is a small 

voltage for reading out the conductance state of the resistive memory cell. A preset reference current 

Iref of the SA differentiates the BL currents that contributed by different combinations of the states 

of two input memory cells, resulting in a Boolean logic function. b, SRAM-based logic operation 

of XY-CIM. Depending on the states of the two SRAM cells, the pre-charged BL discharges to a 

certain level, which can be differentiated by the SA with a preset Vref. The results on BL and BLB 

constitute the AND and NOR logics, respectively. c, Passive 1R NVM-based, d, 1T1R NVM-based, 

e, NOR Flash memory-based (also FeFET-based), and f, SRAM-based dot product operations of X-

CIM. The current or the voltage change on the BL is the analog dot product result Z of the vector x 

stored in the memory cells and the externally applied vector y. All share the same sensing method 

to output the digitalized Z, by using SA or ADC. In c and d, the vector y may be applied through 

WLs (blue symbols) or SLs (red symbols), which usually correspond to binary or analog input 

values, respectively. g, Multi-bit capability of various memory devices. h, Illustration of multiplying 

one x element with one y element, both of which could be single-bit (binary and bipolar) or multi-

bit (analog). i, Illustration of converting the analog result xTy to the digitalized output Z. The dotted 

line represents the fully analog result without discretization, e.g., by using TIA for sensing the result 



on the BL. j, MVM circuit, by generalizing the dot product operation from vector x to matrix X. k, 

Matrix inversion circuit, where vector y is represented by currents externally injected to WLs, and 

vector z consists of output voltages of OPAs. 

Table I. Summary of features, advantages and disadvantages, and challenges of various CIM 

schemes. Here the logic gate is considered to a 2-input one, the parallel MAC operation is 

considered to be N-dimensional. For parallel of X-CIM, it usually targets the acceleration of neural 

network (NN). 
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Table I. 
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