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The Power of Carry-Save AdditionD. R. LutzD. N. JayasimhaDepartment of Computer and Information ScienceThe Ohio State UniversityColumbus, Ohio 43210flutz-d,jayasimg@cis.ohio-state.eduMarch 31, 1994AbstractA carry-save adder (CSA), or 3-2 adder, is a very fast and cheap adder that does notpropagate carry bits. Historically, carry-save addition has been used for a limited set ofintermediate calculations, with the most common example being the accumulation of thepartial products of a multiplication. We examine carry-save addition from a new perspective:as a binary operation in which one of the operands is a number in carry-save form. From thisperspective we develop �ve new uses for CSAs: (1) as fast adder-comparators for evaluatingwhether or not X + Y = Z; (2) as the basis of an expanded instruction set that can reducebranch and data hazards and decrease the cycles per instruction (CPI) on superpipelinedarchitectures; (3) as linear-time multipliers for very large integers; (4) as arbitrary-length,constant-time, synchronous, up-down counters; and (5) as extremely fast frequency dividers.Index terms: carry-save adders, computer arithmetic, superpipelined architectures, pipelinehazards, multipliers, counters, frequency dividers.
1



1 IntroductionA carry-save adder (CSA), or 3-2 adder, is a very fast and cheap adder that does notpropagate carry bits. The usual sort of adder that propagates carry bits is called a carry-propagate adder (CPA). Historically, carry-save addition has been used for a limited set ofintermediate calculations, with the most common example being the accumulation of thepartial products of a multiplication. In this paper we examine carry-save addition from anew perspective: as a binary operation in which one of the operands is a number in carry-save form. From this perspective we develop new and interesting applications for CSAswhich have the potential to dramatically improve the performance of commonly occurringarithmetic calculations on advanced computer architectures.Except for a brief discussion of some future work in the conclusion, this paper is concernedwith two's complement integers. The organization of the paper is as follows: Section 2 for-mally de�nes carry-save addition and discusses some of its interesting properties. The notionof carry-save form as an alternate number representation is introduced, and a fast methodof adding and comparing numbers for equality or inequality is proved. Section 3 proposesthe introduction of CSA-based instructions into the instruction set of a superpipelined ar-chitecture. These instructions can be used to reduce or eliminate many control and datahazards, this improving the performance of superpipelined machines. Section 4 discusses theproblem of multiplying large integers, and shows how to construct a linear time multiplier forthese integers using CSAs. Section 5 presents a new perspective on counting, and shows howvery fast counters and frequency dividers can be constructed with CSAs as building blocks.Finally, Section 6 discusses the future directions of our research. In particular, we elaborateon how oating point numbers could be added with no accumulated round-o� errors usingCSAs. This makes oating point addition associative without sacri�cing speed.2 Properties of CSAsAn n-bit CSA consists of n independent full adders. It takes three n-bit two's complementnumbers as inputs, and produces two outputs: an n-bit sum and an n-bit carry. Let X =xn�1 : : : x1x0, Y = yn�1 : : : y1y0, and Z = zn�1 : : : z1z0 be n-bit words with low order bitsx0, y0, and z0. An n-bit CSA produces a carry word C = cn�1 : : : c10 and a sum wordS = sn�1 : : : s1s0 such thatci = (xi�1 ^ yi�1) _ (xi�1 ^ zi�1) _ (yi�1 ^ zi�1) (1)si = xi � yi � zi (2)Note that c0 is always 0, and that C+S = X+Y +Z. The high order carry bit, cn, providesno useful information when adding signed numbers, so it is discarded. Figure 1 shows afour-bit CSA together with its inputs and outputs.The representation of a sum by the ordered pair (C;S) is sometimes called redundant, becausethere are many values of C and S that produce the same sum [6]. In order to avoid confusion2
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Figure 1: Basic 4-Bit CSAwith other redundant representations, we will say that (C;S) is the carry-save form (or c-sform) of the sum. When C and S are added with a CPA, the resulting number C +S is thecarry-propagate form (or c-p form) of the sum.A major disadvantage of most alternate number systems, including the widely-studied residuenumber systems, is the di�culty of conversion between the alternate system and the two'scomplement system(for examples see [14]). In contrast, conversion between c-s form and c-pform is easy. Numbers in c-s form are converted to c-p form by adding them using a CPA.Numbers in c-p form are converted to c-s form by adding them to (0, 0) using a CSA.We are interested in comparing CSAs and CPAs, and to do this requires a change in per-spective. We usually think of a CSA as a circuit that adds three numbers and produces twooutputs. Instead, consider a CSA to be a circuit that adds two numbers, one in c-s form andone in c-p form, and produces a single output in c-s form. From this point of view, bothCSAs and CPAs are two-input, one-output functional units, and it is possible to comparetheir properties. Three major di�erences are apparent.The �rst, and most striking di�erence, is the fact that a CSA produces its sum in only twogate delays, regardless of the length of the words being added [8], while the fastest n-bit CPArequires 
(log n) gate delays [5]. For 32 or 64 bit words, the fastest CPA requires around14 gate delays, giving the CSA roughly a 7-fold speed advantage [7]. For longer words, thespeedup is even more dramatic.The second major di�erence is that a CSA is a much simpler circuit than a fast CPA, withhardware complexity and area growing only linearly with the size of the input. This meansthat large CSAs are practical (unlike large, fast CPAs), enabling us to solve some interestingproblems involving large numbers. 3



The third major di�erence is that the CSA leaves its output in a somewhat inconvenientform. Determining the sign of (C;S) requires 
(log n) gate delays (if we could compute thesign any faster then we could make a faster CPA). A number (C;S) in c-s form requirestwice as much memory as the same number C+S in c-p form. Finally, it is not obvious howto determine equality or inequality between two numbers when one is in c-s form and theother is in c-p form. Fortunately, there is a solution to this last problem, beginning with aneasy test to see if (C;S) = �1.Lemma 1 Let (C;S) be a number in c-s form. Then C + S = �1 , C and S di�er inevery bit position.Proof:[(] In two's complement numbers, -1 is represented by a word in which every bit is 1, sothis part of the proof is immediate.[)] Let i be the lowest order bit such that ci� si = 0. Then the ith bit of C +S is 0 unlessthere is a carry from the next lower order bit. The sum of two bits generates a carry if andonly if both bits are 1. But i is the lowest order bit with ci� si = 0, so there can be no carryinto i. Since the ith bit of C +S is 0, we have C +S 6= �1, contradicting our hypothesis. 2The time to compute the test in lemma 1 is simply the time to compute a 2-input xor plusthe time to compute an n-input and. This is only one 2-input xor more delay than the timeit takes to determine if a number in c-p form is zero or nonzero.We would like use our fast test for -1 as part of a fast test for an arbitrary value. In otherwords, how can we use a fast comparison with -1 to tell if (X;Y ) = Z for some arbitrary Z?Lemma 2 tells us how to accomplish this.Lemma 2 Let X, Y, and Z be n-bit two's complement numbers. Then X + Y = Z ,X + Y + Z = �1Proof: X + Y = Z , X + Y � Z = 0, X + Y � Z � 1 = �1, X + Y + Z = �1The last line holds because Z is a two's complement number and so �Z = Z + 1. 2The time to compute X + Y + Z in c-s form is the time to compute a not plus the time tocompute a carry-save add.Theorem 1 follows immediately from lemmas 1 and 2.4



Theorem 1 Let X, Y, and Z be n-bit two's complement numbers, and let (C;S) = X+Y +Z.Then X + Y = Z , C and S di�er in every bit position.Theorem 1 gives us a very fast method to determine whether or not X + Y = Z. Notethat the proof did not require that any of the inputs be in c-s form. In fact, the methodis broadly applicable to a very frequently occurring comparison: a comparison that occurs,among other places, in the execution of iterative loops. A four-bit design incorporating themethod of theorem 1 is given in �gure 2.
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Figure 2: CSA-based comparator for determining if X + Y = ZCortadello and Llaberia were the �rst to give a method for evaluating whether X + Y = Zwithout the need for carry propagation [4]. Our design is di�erent from theirs, and hassome advantages. First, it is considerably easier to understand and modify. For example,in section 5 we will modify the design to produce a fast programmable frequency divider.Second, it is easy to separate into two useful functions: carry-save add and compare with-1. The bene�ts of these functions will be discussed in section 3. Finally, our design mayalso be easier to implement, because its basic component, the full adder, has been very wellstudied [12]. 5



Our design is much faster than any design employing CPAs to add and perform comparisons.The fastest CPA-based design to perform this test would add X and Y with a CPA andcompare each bit of the sum with the corresponding bit of Z, as in �gure 3. For a 32-or 64-bit architecture, the CPA-based comparator would take 14 gate delays for the carry-propagate add, and then 4 gate delays (assuming a fan-in of 4 per and gate) to completethe comparison. Under the same assumptions, our CSA-based comparator can complete thecomparison in only 6 gate delays.
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Figure 3: CPA-based comparator for determining if X + Y = ZWe summarize this section with the following observation:Observation 1 If we consider a CSA to be a functional unit that operates on numbers inc-s form, then we have an adder with four remarkable properties:� constant, two gate-delay add time, regardless of word length;� hardware cost that grows only linearly with word length;� an output format that converts easily to ordinary two's complement numbers; and� an output format that can easily be tested for equality or inequality with a two's com-plement number. 6



3 Reducing the CPI of Superpipelined ComputersA superpipelined machine is de�ned by comparison with a contemporary pipelined basemachine. We will consider the base machine to be Hennessy and Patterson's DLX pipelinedmachine [6]. DLX has �ve pipelined stages: instruction fetch, instruction decode, execute,memory, and writeback. The machine cycle in DLX is long enough for the \execute" stageto complete a carry-propagate add.A superpipelined machine of degree m is a pipelined machine in which the cycle time is only1=m as long as the cycle time of the base machine, and the pipeline has about m times asmany stages [9, 10]. Examples of superpipelined machines include the Cray-1 and the CrayY-MP, which are superpipelined of degree 3.While a carry-propagate add takes one cycle to complete on the base machine, it takes mcycles to complete on the superpipelined machine. The advantage of the superpipelinedmachine is that given enough instruction-level parallelism, it is about m times as fast as thebase machine.In an ideal pipeline, an instruction would be completed on every cycle. This ideal pipelinewould have cycles per instruction (or CPI ) = 1. This does not happen because of threehazards: structural hazards, which occur when there are insu�cient hardware resources tosupport a given sequence of instructions; data hazards, which occur when an instructioncannot continue until it obtains a result produced by some previous instruction that is stillin the pipeline; and control hazards, which occur when the normal ow of control is changedby an instruction [6]. Structural hazards can be eliminated by adding su�cient hardware.In this paper we are concerned only with data and control hazards.When an instruction encounters a hazard, the pipeline is stalled for one or more cycles untilthe hazard is resolved. On superpipelined architectures, hazards are especially problemati-cal. Because instruction level parallelism is limited, and because branch statements are socommon, the longer pipelines are more likely to contain hazards. Because the instructionshave longer latencies with respect to the cycle time, hazards can take more cycles to be re-solved. Thus reducing data and control hazards is particularly important for superpipelinedmachines.One way to reduce these hazards is to replace high-latency instructions with low-latencyinstructions. Consider the problem of adding three numbers, i.e., calculatingI = J + K + Lon a superpipelined machine of degree 3. We assume that J, K, and L are already in registers.Two instructions are needed: the �rst adds J and K, and the second adds J+K and L. Thetwo instructions can be issued on consecutive cycles, but at the execution stage the secondinstruction must stall for at least two cycles because of a data hazard (J +K has not beenproduced). Sometimes the compiler can rearrange instructions so that useful work can bedone during these two cycles, but this is by no means guaranteed.7



On the base machine, this situation does not result in a data hazard because of a techniquecalled data forwarding. In data forwarding, the result of the execution stage is forwarded tosubsequent instructions so that they need not wait for the value to be stored in a register.Data forwarding is also useful in the superpipelined machine, but it still cannot prevent adata hazard because the execution now occupies three cycles instead of one. Until the threeexecute cycles have completed, there is no data value to forward.In the above example, the value J +K is never needed, at least in c-p form. The two-cyclestall is spent waiting for a value that is of no use once we have calculated J +K + L. Thisdiscussion leads us to make the following observation.Observation 2 When adding three or more numbers together, we usually do not care aboutthe values of the intermediate sums, and so it is a waste of computational e�ort to computethese values with a CPA.This wasted e�ort is hidden on machines such as the base machine whose cycle time islong enough to complete a carry-propagate add, but becomes apparent on superpipelinedmachines. One way to get rid of this wasted e�ort is to add a carry-save add instructionto the instruction set. A carry-save add instruction would use a CSA to add the contentsof three registers, sending the outputs to two registers. Unlike the carry-propagate addinstruction, the carry-save add instruction would complete in a single cycle.There are many possible ways to design such an instruction, but for our present purposeswe will use the following simple design. The instructionCSA R1,R2,R3will mean to do a carry-save addition on registers R1, R2, and R3, putting the results of thecarry-save addition in R1 and R2, with the carry going into R1 and the sum going into R2.In contrast, the carry-propagate add instructionADD R1,R2,R3means to add R2 and R3 with a CPA and put the result in R1.Given these instructions, we can now calculate I = J +K+L without the 2-cycle stall. The�rst instruction adds J +K + L with a CSA, and the second adds the two outputs with aCPA.Other applications arising from observation 2 include:� counting { counter values are usually incremented much more often than they areused. The carry-propagate add can often be delayed until the �nal value is needed.For example, a program that counts the number of characters in an input stream couldmaintain its count in c-s form. 8



� calculating array or structure addresses { this is usually done with a sequence of shiftsand adds, and only the �nal sum is useful. All of the adds except the last could bedone as carry-save adds.� maintaining loop indexes { we will show how to do this in an example later in thissection.A compiler can detect when variables are used by the standard technique of examining def-use chains [1]. We also can determine which kinds of uses require their inputs in c-p form.For example, if the use is a multiplication then the inputs are required to be in c-p form,but if the use is a sum then the inputs could be in either form. To save register space, thecompiler would only want to use carry-save instructions when it is necessary to avoid a datahazard.Given a carry-save add function, we would probably also want a carry-save subtract functionCSS R1,R2,R3that would subtract R3 from the sum of R1 and R2. The carry-save subtraction can beperformed by inverting the bits of register R3; placing a 1 in the low order bit of R1;performing a carry-save addition on R1, R2, and R3; and placing the results of the carry-save addition in R1 and R2, with the carry going into R1 and the sum going into R2. Weneed to place a 1 in the low order bit of R1 in order to complete the negation of R3. Thereason that we can place a 1 in the low order bit of R1 is that the carry word will neverhave the low order bit set, at least not after the �rst carry-save add. The compiler can keepthings straight, and if there has not been a carry-save add into R1 and R2 it can performone, e.g.CSA R1,R2,0CSS R1,R2,R3This method allows for very fast subtraction (three gate delays). Observe that we have onceagain substituted a high-latency instruction with a low-latency instruction. If the outputfrom the subtraction is needed as part of a sum, there will be no data hazards as there mightbe with a carry-propagate subtraction.Another high-latency instruction is multiplication. If we assume a very fast multiplier, thensigni�cant savings can be achieved by leaving the output of the multiplier in c-s form when itis not needed in c-p form. For example, the calculation of many array or structure addressesinvolve a multiplication (to �nd the starting address) followed by an addition (to �nd theo�set). In this case, the address can be calculated more quickly (and stalls can be avoided)if the multiplier does not propagate the �nal carry.The CSA-based instructions can also help with certain control hazards, such as those intro-duced in loops. Loop overhead is the time required to check whether a loop has terminated,9



and to branch back to the top of the loop if it has not. For example, consider the followingloop, that arises in many numerical packages such as LINPACK:DO 10 I=1,N10 Y[I] = A * X[I] + Y[I]There are currently two fast ways to handle the overhead for this loop. The �rst method isto set a register to the value -N ( or +N), and then increment (or decrement) and test for0. The test for 0 can be very fast (approximately logN gate delays), but the increment ordecrement operation requires a full carry propagate add. The second method is to incrementa pointer to X and a pointer to Y and compare one of the pointers to a terminating value (saythe address of Y[N]). The normal method for comparing two numbers is to subtract them,so even though we have discarded the variable I we still have the overhead of one subtractionper loop iteration. In both cases, we have to wait 3 cycles before we can determine whetherto branch or not.If we have the CSA instruction, we could implement the loop by setting I to �N (possibly inc-s form) and then incrementing and testing for equality to -1 on each iteration. As shownin Lemma 1, this is particularly easy to test. One way to implement the test would be tohave a branch on carry-save equal to -1 instruction. This instructionBCSEQM1 R1,R2,labelwould mean to branch to \label" if R1 + R2 = �1. Putting these instructions together weget the code for the loop overhead shown below, in which the branch decision can be madein the cycle following the carry-save adds.LWI R1,0 # R1 <- 0LWI R2,0 # R2 <- 0LWI R3,N # R3 <- NCSS R1,R2,R3 # (R1,R2) <- -Nlabel: . . . # code for Y[I] = A * X[I] + Y[I]CSA R1,R2,1 # increment loop counter (R1,R2)BCSEQ R1,R2,label # branch to label if R1 + R2 = -1There are many details to be worked out before we can unequivocally recommend a particularset of carry-save functions. However, the basic principle, as given in the following observation,is clear.Observation 3 Replacing high-latency carry-propagate additions (and subtractions, com-parisons, multiplications, etc.), with their low-latency carry-save equivalents can eliminatedata hazards. 10



How much time can we save by adding carry-save instructions to superpipelined machines?Unfortunately, there is no data on how many carry-propagate instructions can be replacedby their carry-save equivalents in a typical program mix. We do know that control anddata hazards are a big problem. In [15], a simulation of a superpipelined scalar version ofthe Cray 1 with no structural hazards still showed a CPI of more than 2 on the �rst 14Lawrence Livermore Loops (The ideal CPI would be 1). This means that more than half ofthe available cycles were spent on stalls because of control and data hazards. Most of thesestalls were probably related to loop overhead, because the CPI in a similar simulation wasclose to 1 when the loops were unrolled eight times [17].Some measurements on DLX show that conditional branches based on a simple test forequality or inequality with zero account for more than half of all conditional instructions,and approximately 11 percent of all instructions executed (The data used in this paragraphare taken from appendix C in [6]). It is likely that most of these tests were precededby carry-propagate additions or subtactions, many of which could cause a data hazard ona superpipelined machine. Replacing these instructions with their CSA-based equivalentscould save two stall cycles on each of these branches. Additions account for 20 percent ofall DLX instructions executed, but there is no indication as to how many of these additionscould pro�tably be replaced with carry-save additions. We plan to do simulations at theinstruction level on a variety of applications before recommending CSA-based instructions.4 Multiplying Large Integers in Linear TimeSo far, we have examined CSAs in the context of ordinary length words. What use can wemake of the fact that CSAs are equally fast for large words?One application that uses long words, and in particular long multiplications, is encryption.The RSA encryption algorithm, for example, requires repeated multiplication of numbersthat are hundreds of bits in length [13].It is easy to construct an n-bit multiplier that uses a single CSA to multiply in linear time.The design (�gure 4) is essentially the same as the multiply-step design used in some RISCarchitectures, with the accumulation done in c-s form. Initially, the multiplicand is loadedinto register X, and the multiplier into register M. Registers C and S are set to 0. Then weexamine each bit mi(0 � i � n�1) in sequence. If mi is 1, then register X is added to C andS with a CSA. Whether or not mi is 1, X is shifted left 1 bit. After n steps, C and S containthe product in c-s form. The c-p form of the �nal product can be obtained by adding C andS with a CPA.Note that this design is scalable, and that it yields a cheap linear time multiplier even whenn is large. Each of the multiply/add steps can be performed in constant time, and all of thedata that is needed is in registers, so the cycle time can be much faster than is usual for aCPU. The �nal addition needed to convert from c-s form to c-p form could be performed byrepeated calls to a 32 or 64-bit CPA. 11
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Figure 4: First 4 Bits of a Simple CSA-Based MultiplierThe current method for multiplying large integers is to make repeated calls to a 32 or64-bit multiplier, which is a slow process. For numbers in the 300 to 7000-bit range, theKaratsuba algorithm gives the best results (O(nlog2 3) multiplies), while 7,000 or more-bitnumbers are best multiplied using an FFT-based algorithm (O(n log n) multiplies) [11]. Bothof these methods have fairly high overhead, and they would be considerably slower than thelow-overhead linear-time multiplication provided by the special-purpose hardware proposedhere.For an example of the possible savings, our best hand-tuned algorithm for multiplying 1000-bit numbers on a SPARC SLC (done as part of [11]) consumed over 330,000 cycles. Given thesame technology, but ignoring I/O, our 1000-bit multiplier could produce the same outputin c-s form in 1000 cycles. Given the slowest possible carry-propagation, which would be topropagate the carries by running the multiplier for another 1000 cycles, the output wouldbe available in c-p form in 2000 cycles. Since the cycle time of our multiplier could probablybe 1/4 of the cycle time of a processor using the same technology, let us assume that wecan do the multiplication in 500 processor cycles. The time to read the multiplicand is 32cycles. An additional cycle is required to read the LSB of the multiplier (the rest of themultiplier could be read during the multiplication). The output begins during the the carry-propagation stage, and completes one cycle after the carry-propagation is completed. Thusthe total multiplication time (including I/O) would be something like 534 cycles, more than600 times faster than the best method using repeated calls to a fast �xed-length multiplier.This long word multiplier could also be used to multiply a vector by a scalar. Suppose wehad a 4k-bit multiplier. Then we could multiply a vector of 64 32-bit numbers by a 32-bitscalar by loading the 64 numbers into the multiplicand register X with 32 zeros in betweeneach number. Then after 32 (fast) cycles, we could read all 64 64-bit products.12



5 A New Perspective on CountingThere are many di�erent circuits that are called counters. We focus on two of them: (1)a circuit that counts the number of input pulses it receives; and (2) a circuit that providesan output pulse that is some multiple of its input pulse. This second type of counter issometimes called a frequency divider or a scaler.For the �rst type of counter, current designs update the count in O(log n) gate delays, andthen allow access to the count (i.e., allow the count to be read) in constant time. We proposethat this is exactly the opposite of what a fast counter should do.Observation 4 Counter values are updated much more often than they are retrieved, so forfast counters, we should emphasize the speed of updating over the speed of retrieval.Figure 5 shows a counter that maintains its count, (C;S), in c-s form. The count is updatedby adding the value in register X to (C;S) in response to an input pulse (the input pulseis not shown in the �gure). For the simplest type of counter that just counts input pulses,then X contains the value 1. The count is retrieved by adding C and S with a CPA. Unlikethe usual design, updates occur in constant time, and the slow carry-propagation only takesplace when the count is retrieved.
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FA FA FA FAFigure 5: 4-Bit CSA-Based CounterIn [16], Vuillemin presents the following open question: \is it possible to design a syn-chronous, arbitrary length, constant time up-down counter"? If we accept the notion thatthere is no need to maintain the count in c-p form, then �gure 5 is such a counter. Thecounter is synchronous, because each of its bits are updated simultaneously. We can countdown by setting X = �1. In fact, we can count up or down by an arbitrary value by setting13
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Figure 6: 4-Bit CSA-Based Frequency DividerX to that value. The time to increment (or decrement) the counter is only the delay of afull adder plus the length of time it takes to store the outputs.For the second kind of counter, the frequency divider, the carries never have to be propagated.Figure 6 is a programmable frequency divider based on Theorem 1. The counter works bycounting up until it reaches -1. Since we want to output a 1 after T cycles, the sum of theoriginal inputs should be �T . We achieve this by setting Z = �T , C = 1, and S = �1.The �rst input signal (the input signal is not shown) causes the adders to add C, S, andZ. The second and succeeding signals add 1 to this sum (because of the 1 in c0). Aftereach addition, the c-s sum is compared to -1, using the fast comparison given in lemma 1.When -1 is attained, an output pulse is produced. The output pulse also allows the value inregister Z (which is still -T, unless some other frequency is desired) to become part of thenext input cycle, which brings us back to the initial state.The frequency divider can handle any frequency in the range from 1 to 2n.14



6 Future DirectionsWe are currently investigating new uses for carry-save addition in oating point arithmetic.One interesting possibility is given in [2] and [3]. In these papers, Cappello and Mirankerpresent designs for systolic super summers, which are adders that add oating point numbersin �xed point form. We believe that these designs could be simpli�ed by using the carry-saveaddition concepts in this paper.The basic idea is to convert the oating point numbers to �xed point form. For a numberwith M mantissa bits and E exponent bits, the conversion can be done in E stages. Theinitial stage consists of the M mantissa bits. Each subsequent stage involves the examinationof an exponent bit e, and the placement of all of the bits from the previous stage to one oftwo new locations, depending on whether e is set or not. The number of bits in each stagegrows, until the �nal stage contains 2E +M � 1 bits, 1 of which is a sign bit. For example,an IEEE 754 single precision number could be represented by a 279-bit �xed point number.Each stage of this conversion requires only two gate delays, and the process would be easyto pipeline.After this conversion, we can accumulate the numbers in carry-save form. An interestingsimpli�cation to Cappello's and Miranker's designs is to use the sign bit to indicate whetherto add or subtract each new number N from the carry-save sum (C, S). Using the methodfor carry-save subtraction given in section 3, we would perform the subtraction by invertingthe bits of N, placing a '1' in the low order bit c0 of C, and adding with a CSA. It is safe toreplace c0 with 1 because c0 is always 0 for a number in c-s form. The addition or subtractionwould only cost two or three gate delays, respectively, which is fast enough to keep up withany superpipelined machine.When the last number has been added, the carry bits have to be propagated and the sumconverted back to �xed point form. We can do this using an ordinary-length CPA by locatingthe highest-order signi�cant bit in (C _S), and then adding M bits of C and S starting withthis position. The position of this bit will also provide us with the exponent for the �nalsum. While this procedure is somewhat complicated, it only needs to be done once for eachsum, irrespective of the number of terms that are being added.There are at least four advantages to such a scheme:� Addition by this method is associative (unlike ordinary oating point addition), whichwould greatly simplify numerical programming and numerical analysis.� Accumulated roundo� error is eliminated. Sums are only rounded once, instead ofbeing rounded after each addition.� the whole process can be pipelined so that it can keep up with vector superpipelinedmachines.� In a multiprocessor environment, multiple processors could compute very large sumsin parallel with no accumulated roundo� error. The method would be to have each15



processor maintain its sum in �xed-point c-s form, and then combine the sums in theusual binary fashion to get the �nal sum. Only this �nal sum would have the carriespropagate and be converted back to a oating point representation.There are a number of other interesting questions that we are currently addressing, par-ticularly with regard to the work in section 3. How can carry-save instructions best beincorporated into an architecture? Should there be dedicated carry-save registers, or shouldwe use normal registers? What is the best instruction set? How can compilers best takeadvantage of the carry-save instructions? We need to run simulations to see what kindof savings are generated by the various proposals, and to see what e�ect the CSA-basedinstructions have on the CPI of superpipelined machines.An unresolved issue concerns overow. It may not be possible to detect overow when anumber is in c-s form. This is probably not a major concern for most applications, but certainprograms may have to avoid CSA-based instructions in certain situations{ the compiler coulddetect such situations and generate the proper code.We have not yet considered superscalar architectures. What e�ect would carry-save in-structions have on these architectures? Jouppi and Wall showed that superscalar and su-perpipelined machines have roughly the same performance [10]. If it turns out that super-pipelined machines can be made signi�cantly faster with the addition of CSA-based instruc-tions, then it is likely that superpipelined machines will outperform superscalar machines.References[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, Principles, Techniques,and Tools. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.[2] Peter R. Cappello and Willard L. Miranker. Systolic super summation. IEEE Transac-tions on Computers, 37:657{677, June 1988.[3] Peter R. Cappello and Willard L. Miranker. Systolic super summation with reducedhardware. IEEE Transactions on Computers, 41:339{342, March 1992.[4] Jordi Cortadella and Jose M. Llaberia. Evaluation of a+b = k conditions without carrypropagation. IEEE Transactions on Computers, 41:1484{1488, November 1992.[5] Barry S. Fagin. Fast addition of large integers. IEEE Transactions on Computers,41:1069{1077, September 1992.[6] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.Morgan Kaufmann Publishers, Inc., Palo Alto, California, 1990.[7] F. Hill and G. Peterson. Digital Systems: Hardware Organization and Design. JohnWiley and Sons, Inc., New York, New York, third edition, 1987.16
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