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Introduction to Cryptography

The most basic encryption scheme you can think of - Caesar Cipher

Figure 1: https://tex.stackexchange.com/questions/103364/how-to-create-a-
caesars-encryption-disk-using-latex

This scheme is super easy to break, so we needed something more
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RSA

Secret Key - two large prime numbers
Public Key - product of those prime numbers

m Enc(m)
Public Key

With just the public key, finding m given Enc(m) is hard,
But with the private key it is easy!

Given the public key it is hard to find the private key because factoring
large integers is hard
RSA is based on the integer factoring problem being hard
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Short Comings of RSA

1 Quantum algorithms can factor integers efficiently
I Quantum computers can break all our cryptography!

2 Not provably secure
I For some choices of primes RSA can be broken with out factoring the

public key

3 Can not process on encrypted data
I Given Enc(a) and Enc(b), can not find Enc(a + b) or Enc(a · b)
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Building a Better System

We need a new problem to build a new crypto system on
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The Learning With Errors Problem

We work in Zn
q

Pick one s ∈ Zn
q

Pick many ai ∈ Zn
q

Given
(a1,a1·s)
(a2,a2·s)
(a3,a3·s)

...

can you find s?

χ an error distribution over Zn
q

Pick many ei ← χ
Set bi = ai · s + ei

Given
(a1,b1)
(a2,b2)
(a3,b3)

...

, finding s is hard!

By adding a small amount of error a trivial problem becomes hard
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Basic Scheme [BGV12]

Use the ring Rq = Zq[x ]/〈xd + 1〉
χ is the error distribution (over Rq)
N = b log qc number of samples for dRLWE to be well defined

Secret Key Generation:
pick s ′ ← Rq,
set SK: s = (1, s ′) ∈ R2

q

Public Key Generation:
pick a′ ← RN

q and RN
q 3 e← χN

b← a′s ′ + 2e.

set PK: A =

 b −a′
 ∈ RN×2

q

Note that A · s = 2e ∈ RN
q
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Basic Scheme Cont.

Encryption:
message m ∈ R2, m = (m, 0) ∈ R2

q

r← RN
2 a small random vector

ciphertext c = m + AT r =

[
m
0

]
+

[
bT r

−a′T r

]
∈ R2

q

Decryption:
for a ciphertext c output m← [[〈c, s〉]q]2

〈c, s〉 = 〈

[
(a′T s ′ + 2eT )r + m

−a′T r

]
,

[
1
s ′

]
〉 = 2eT r + m

As long as 〈c, s〉 < q/2 then [[〈c, s〉]q]2 = [2eT r + m]2 = m

[x ]q denotes taking an 0 ≤ x ≤ q − 1 to its representative in (−q/2, q/2]
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Addition and Multiplication

For two ciphertexts c1, c2 encrypting messages m1,m2

Addition: c1 + c2 represents m1 + m2

c1 + c2 =

[
m1 + bT r1
−a′T r1

]
+

[
m2 + bT r2
−a′T r2

]
=

[
m2 + m1 + bT (r1 + r2)

−a′T (r1 + r2)

]
〈(c1 + c2), s〉 = 2eT (r1 + r2)

Multiplication: c1 ⊗ c2 encrypts m1 ·m2 under the new key s⊗ s
m1 ·m2 = [[〈c1 ⊗ c2, s⊗ s〉]q]2
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Recall that we are trying to build a crypto system that is:

1 Immune to quantum attacks

2 Provably secure

3 Capable of processing encrypted data

Also, how do we show that LWE problem is hard?
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Lattice Problems

What is a lattice?

A discrete additive subgroup of Rn

All linear combinations of some
basis vectors

Lattices can exist in any dimension

Lattice Problems:

Shortest Vector Problem

Closest Vector Problem

These problems are conjectured to be both classically and quantum hard
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The SVP LWE Reduction

How does this make LWE quantum hard?

Reduction

If there is a reduction from a problem A to a problem B, then an efficient
algorithm for solving B can be used as a subroutine to make an efficient
algorithm to solve problem A

[Regev 05] found a quantum reduction from LWE to SVP
If you can solve LWE efficiently, then you can solve SVP efficiently

The encryption is an instance of LWE, so we have provable security

We also have average case worst case reductions
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Homomorphic Encryption

Homomorphic Encryption

a form of encryption that allows computation on ciphertexts, generating
an encrypted result which, when decrypted, matches the result of the
operations as if they had been performed on the plaintext. - Wikipedia

Recall: given Enc(a) and Enc(b) we want Enc(a + b) and Enc(a · b)

Homomorphic Encryption does not exist with traditional crypto tools

In 2009, the first HE scheme was developed [Gentry 09], but was very slow

In 2013 a faster scheme was developed
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Why it Works

There are many aspects of the LWE problem that make homomorphic
encryption possible, but one of the most important is that there is some
randomness in the encryption:

m RSA c

m RSA c

m LC c1 + e1
m LC c1 + e2

This prevents ”observational attacks”
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What I did

I learned this stuff

Goal: get information from node A to node B, transmission line is
untrusted

So we add relay stations
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What I did
Goal: get information from node A to node B, transmission line is
untrusted

But information quality can degrade over long transmission lines

So we add relay stations
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What I did
Goal: get information from node A to node B, transmission line is
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So we add ”relay stations”
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Problems and Solutions

How do relay stations know what is degradation and what is the valid
encryption with out knowing the unencrypted message?

Using homomorphic encryption techniques, we can check that
transmitted information is correct with out knowing the message.

But homomorphic evaluation causes the encryption’s ”noise” to grow,
which increases the chances of decryption error.

We applied existing ”noise management” techniques that do not
compromise security

When adding information that did not need to be encrypted, we
found a way to incorporate unencrypted information with the
encrypted information
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