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Abstract: Matrix multiplication 1s a kernel and fundamental operation in many applications mcluding image,
robotic and digital signal processing. The key component of matrix multiplication is Multiplier Accumulator

(MAC) which is a decisive component for the performance of matrix multiplication. This study proposes a
pipelined floating-point MAC architectiwe on Field Programmable Gate Array (FPGA) using a novel
accumulating method. By adding the last N-stage results of the pipelined adder, the accumulation of the
multiplier products can be obtained. Then, a matrix multiplication is implemented by employing parallel systolic
structure based on the proposed MAC. Experimental results demonstrate that the proposed MAC architecture
achieves higher clock speed and consumes less hardware resowrces than previous designs and the matrix

multiplier has a good performance and scalability. It also can be concluded that the efficiency of the matrix

multiplier is even higher when the matrices are larger.
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INTRODUCTION

Matrix multiplication is a complex and fundamental
matrix operation in many algorithms used m scientific
computations. It 1s a frequently used kernel operation in
a wide variety of computer vision, robotics and digital
signal processing (Beauchamp et al., 2008; Qasim et al.,
2008, Yang et al., 2012). Thus, efficient matrix multiplier
plays a sigmficant role in improving the performance of
these applications. However, some applications have a
rigorous demand on real-time and the matrix elements of
them are floating-point (Luo and Martonosi, 2000, Zhu,
2013). Traditionally, matrix multiplication operation is
implemented on PC or DSP (Digital Signal Processor)
which is based on serial structure (Riaz et al, 2003,
Xu et al., 2011) and often become the bottleneck of the
overall system. Due to the programmability, density
increasing and massive computing performance especially
in floating-point calculation, Field Programmable Gate
Array (FPGA) 1s becoming a promising way to speed-up
the floating-point matrix multiplication.

At present, researches on FPGA based matrix
multiplication have made some achievements. A large
number of previous works have been done to the design
and implementation of fixed-point matrix multiplication.
Amira et al. (2000) implemented an 8 bit fixed-point matrix
multiplication but the bandwidth proportionally increased

with the size of matrices which limits its scalability by
hardware resources. Jang et al. (2005) presented an
algorithm which needs fixed bandwidth but the memory
size 1s proportional to the matrices size. As mn the field of
floating-pomnt matrix multiplication, Zhue and Prasanna
(2007) presented an algorithm which employs linear
systolic architecture to implement the calculation but it
requires mtercommumecation between the neighboring PEs
(Processing Element), such communication limits the
algorithm’s extensibility. Campbell and Khatri (2006)
proposed a parallel systolic structure which avoids the
intercommunication, this structure can deal with multiple
PE simultaneously and improve computing efficiency,
(Dou et al., 2005; Paidimarri et al., 2009, Fovanovic and
Milutinovic, 2012) adopted the structure but the efficiency
of their design 1s not 1deal.

The key component of the matrix multiplication 1s
Multiplier Accumulator (MAC) which consists of
multipliers and adders (Tin ez al., 2006). Some researchers
have attempted to unprove the performance of MAC by
optimizing the architecture of the multiplier and adder but
the improvement is not enocugh. Some others use TP
(Intellectual Property) core of the multiplier and adder to
realize the MAC. The IP core has been optunized
according to the FPGA chip technology which lays a
good foundation for designing a High-performance MAC.
With the optimized TP core of floating-point multiplier and

Corresponding Author: Ting Zhang, College of Information Science and Engineering, Hunan University, Changsha, Hunan,

410082, China Tel: 86-135-48606167

1832



Inform. Technol J., 12 (9): 1832-1838, 2013

adder, a signal clock cycle method was adopted in
(Tian et al, 2008) but the speed of this design is low since
1t 1s not a pipelined structure. Liu et @f. (2012) proposed a
loop pipeline structure which 1s used to solve the problem
of data sequence conflict in their design but such extra
control process consumes a large number of registers. All
the methods mentioned above don’t take full advantages
of the optimized IP core according to the computing
process of MAC.

This study proposes a novel architecture for
pipelined floating-pomt MAC by splitting the multiply
accumulation process. Then with the MAC, a large scale
configurable floating-point matrix multiplier adopting the
parallel systolic architecture is implemented which can
bring a sigmficant inprovement to the computing
performance of matrix multiplication

Matrix multiplication: Tn general, assuming the
dimension of matrix A and matrix B are m = and {*n, matrx
multiplication C = A»B can be defined as following:

1
g, =p.a,xb;l<izml<j<n (M
k=1

where, matrix A = (a,), B = (by) and C = (¢;). The column
size of matrix A must equal to the row size of matrix B and
the dimension of matrix C 1s m=n. The matrix C can be
calculated as shown in Fig. 1.

In the procedure, the calculation for every element of
matrix C consists of IxI multiplications and 7>/ additions,
so the whole process mcludes 2xmx>nx! multiplications
and additions and the computational complexity is O(n’).
The calculation of floating-point matrix multiplication will
be more complex, as the floating-point multiplier and adder
need several operations to process exponent and
mantissa. This matrix multiplication procedure is time
consuming if it is executed in the mentioned serial
structure. So it is necessary to design a parallel
architectire to umprove the performance of the matrix
multiplication.

Architecture and design: Tn matrix multiplication, MAC is
the most important component. The performance of MAC
determines the efficiency of the matrix multiplication
directly. A matrix multiplier usually contains several MAC
and each MAC is called a PE. The study proposes a novel
architecture for pipelined floating-point MAC and
umplements matrix multiplier based on the MAC 1n parallel
architecture.

The MAC architecture: MAC is composed of one
floatng-pomt multiplier and one accumulator, the

Function MatrixMutiplication (Matrix A, Matrix B)
MMatrix A: m=-dimension matrix */
f*Matrix B: /xn-dimension matrix®/
MMalrix C: m=n-dimension matrix®/
{
Matrix C;
For (int i = 0; i<m; I++)
For (int j = j<n; j++)
G0
For (int i = 0; i<im; T++)
For (int j = 0; j<n; j+H)
For (int k = 0; k<l; k++)
Ci Gy Ay By

Fig. 1: Pseudo code of computing process i matrix
multiplication

g
\_/

Accumulator

Fig. 2: Frame structwre of MAC, MAC: Multiplier
Accumulator, A and B: Input of the multiplier,
R: Result of the multiplier and S: Result of the
adder

accumulator includes only one floating-point adder.
Figure 2 shows the structure of the MAC, in which, A and
B are mmputs of the multiplier, R 15 the result of the
multiplier which is also the input of the accumulator, C is
the result of the adder. During each clock cycle, the
accumulator continuously takes C and R as the inputs of
the adder to complete the accumulation operation.

The optimized TP core of floating-point multiplier and
adder are all pipelined structure, so the MAC designed
with them can continuously receive the input data and
export the result sequentially. Supposing the pipeline
stage of the floating-point multiplier and adder are M and
N, respectively, the computing result of the mput n the
first clock cycle will arrive at clock cycle M+N+1. Then the
second clock cycle will amrive at clock cycle M+N+2. So it
is easy to find that the computing result of the input in the
clock cycle P will arrive at clock cycle M+N+P.

Figure 3 illustrates the computing process of the
accurmnulation m MAC. As shown in the figure, N 1s the
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Fig. 3: Accumulation process of the pipeline accumulator in MAC, MAC: Multiplier Accumulator, Ri: Result of multiplier
in clock cycle i, Si: Result of adder in clock cycle i and N: Pipeline stages of the adder

pipeline stage of the adder, the top left of each grid 1s
clock cycle, R and S are the mput and the output of
accumnulator m current clock cycles. The green arrows
represent the direction of data flow and the red rounded
rectangles are the operator of a multiply addition
operation. The imtial value of the accumulation 13 zero, so
the results of the accumulator are all zero from clock cycle
1 to N which can be expressed as:

S (i) =0; (1<i<N) )

From clock cycle N+1, the accumulator begins to
export valid result. And at the clock cyele N+1, the result
of the accumulator can be written as:

S (N+1) = R(1)+S(1) (3)

In the equation above, as S (1) = 0, it can be obtained
as:

SN+ =R (1) (4)

At the clock cycle 2N+1, the result of the accumulator
can be written as:

SN+ =3 (N+1HR(N+1) =R A HR (N+1) ()

Then the result of the accumulator at clock cycle 1
{(1=N) can be expressed by the following equation:

S(i):S(i—N)+R(i7N):§:R (- jxNp<Me| G/N 6

According to the analysis above, the following
equation can be figured out:

Q=S(P)+S(P-1)+S(P-2)+V~+S(P—N)=iR(j) N

As shown in the equation, Q 1s the summations of all
the multiplication results.

To obtain the final result of the accumulation, one
has to add the results of the last N stages. As using
multiple adders to implement the addition 1s hardware
resources consuming and has no obvious improvement
on speed, the proposed architecture uses a pipelined
structure with only one floating-point adder to complete
the addition of the last N data instead of multiple adders.

Parallel architecture of matrix multiplier: In order to
achieve a parallel matrix multiplier, the data should be read
1n parallel according to the computing processes of matrix
multiplication. As the row size of matrix A equals to
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column size of matrix B, the data from them can be read
simultaneously to perform the multiply accumulation
operation and calculate the corresponding elements of
matrix C. If the number of the columnn of matrix A 1s [,
Fig. 4 shows the sequence of the data read from matrices
A and B from clock cycle 1 to 1 then these data will be fed
mnto MAC to i this order.

To achieve the reading and computing mn parallel,
each row of matrix A and each column of matrix B in
memory A array and memory B array should be stored,
respectively. Figure 5 presents the parallel array
architecture of matrix multiplication. In this architecture,
RAM A, stores the i-th row of matrix A, RAM B, stores the
jth column of matrix B. Each PE receives elements read
from RAM A and RAM B simultaneously and calculates
each element of matrix C. Thus for am>n matnix multiplier,
m»n multiplier accumulation operations are performed in
each clock cycle simultaneously, the computational
complexity can be reduced to O(n).

Clock cycle |
A, C,
AIZ Clv\
. X .
A‘ml lel

Clock cycle[ - Clock cycle I Clock cycle /

Fig. 4: Reading process of data sequence from clock

cyclel to !

RAM RAM RAM

B, B, B,
RAM
~ LEE - EE
RAM
RAM M M
=~ Lpm Lpm - LB

Fig. 5: Parallel array architecture of matrix multiplier, PE:
Processing element

Since, there 18 no intercommumecation between
the neighboring PEs, they complete
computation task independently, so the architecture can
be applied to matrix multiplication with any size. It also
can easily be extended to more pieces of FPGA parallel
computing.

their own

Experiment and evaluation: The proposed MAC
architecture and matrix multiplier is implemented by
Hardware Description Language (HDIL). These designs
are siunulated with Modelsim 6.5 b and synthesized with
Quartus II 11.1 on an Altera Stratix III based evaluation
board. Several evaluations are made, respectively, to
verify the performances of the proposed MAC and matrix
multiplier.
Performance of MAC: As pipeline technology
decomposes a single long operation into multiple shorter
independent stages, it can 1improve the execution
frequency of the overall system but at the cost of extra
So pipeline stage of the floating-point
multiplier and adder is varied in the experiment to evaluate
the performance and resources consumption of the
proposed MAC. So far, several related works have
been published (Paidimarri et al., 2009; Jin et al., 2006;
Liu et al, 2012). Paidimarri et al (2009) designed a
pipelined MAC with single-cycle accumulation and it was
synthesized on the same FPGA device with this study.
Table 1 shows the comparison with (Paidimarri et al.,
2009) in frequency and resources consumption under
different pipeline stages. It is observed that the frequency
of the proposed MAC and (Paidimnarri et af, 2009)
increases with the increasing of the number of pipeline
stages, meantime the resources consumption also
increases. The proposed MAC can achieve a frequency at
26295 MHZ and save about 17.5% Look-Up-Table (LUT)
resowrces when the pipeline stage is 9. When the pipeline
stage is 11, the frequency is 265.67 MHZ and the LUT
resources can be saved about 49.4%. Compared with
(Paidimarr et al., 2009), the proposed MAC can achieve
higher frequency while utilizing less resowrces
consumption.

Table 2 presents the MAC performances comparison
with (Iin et al, 2006; Dou et «l., 2005) which are
synthesized on different FPGA devices. Tt shows that,

Tesources.

Table 1: MAC performances comparison with different pipeline stages on stratix 3

Frequency (MHZ) Area (LUTs)
Pipeline stages Paidimarri et al. (2009) Proposed MAC Paidimarri et al. (2009) Proposed MAC
7 - 193.69 - 1479
9 221 262,95 1890 1559
11 234 265.67 3141 1590

--: Wat listed, MAC: Multipler accirmilator, LUT: Look-up-table
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Table 2: MAC performances comparison on different devices

Design Devices Pipeline stages Frequency (MHZ) Area (LUTs)
Proposed MAC Stratix III 9 262.95 1559
Jin et al. (2006) Virtex TV 13 123.60 1774
Dou et al. (2005) Virtex I 13 200.00 2184
MAC: Multipler accumulator, LUT: Look-up-table
Table 3: Malrix multiplication performance comparison
Design No. of PEs Frequency (MHZ) Area (LUTs) DSPs Block memory (9kb)
Proposed matrix multiplier 10 179.2 15600 40 4927

20 178.3 30846 80 5120
Zhuo and Prasanna (2007) 10 105.0 41157 - 160
Fovanovic and Milutinovic (2012) 252 161.0 290556 2016 4032

--: Not listed, PE: Processing element, LUT: Look-up-table and DSP: Digital signal processing

with lower pipeline stages, the proposed MAC still can
achieve higher frequency and less
consumption.

The above experimental results show that the MAC
proposed 1n this study has a trade-off between frequency
and resources consumption and its performance 1s
superior to others.

Tesources

Performance of matrix multiplication: From Table 1, 1t1s
noticed that the frequency and area consumption 1s better
than others when the pipeline stage is 9. So, the matrix
multiplication is designed using this pipeline stage
directly. With different number of PE, the requirement of
hardware resowrces increases linearly. The dimension of
matrices A and B also can be configured in the matrix
multiplication. Table 3 shows the detailed computing
performance of the matrix multiplication when the
dimension of matrices A and B are 30x40 and 40x30,
respectively. In the table, Block Memory is M9 and the
unit memory size of it is 9 kb. In the design of Zhuo and
Prasanna (2007) and (Fovanovic and Milutinovic, 2012),
their Block Memory consumption includes only the
computing part of the matrix multiplication which doesn’t
involve the storage of the matrices data and the memory
consumption of the storage increases lmearly with the
matrix dimension. In this study, the memory consumption
includes both storage and computation memory. For the
computation part, the consumption can be obtained by
subtracting Block Memory size of 20 PEs” and 10 PEs’. So
the memory consumption for 10 PEs 1s 5120-4927 = 193.
Then the remaining size is the storage consumption which
18 4927-193 = 4734 for 10 PEs. Since, number of LUTs and
DSPs 18 proportional to that of PEs', the consumption of
LUT and DSP of each PE can be calculated by dividing
the total consumption by the number of corresponding
PE.

Table 4 represents the resource consumption of each
PE. As shown m the table, the proposed matrix multiplier
consumes 18.75% more Block Memory than Zhuo and
Prasanna (2007) and Fovanovic and Milutinovic (2012)

Table 4: Resources conswnption of each PE in matrix multiplication

Area Block
Design (LUTs) DSPs  memory (9kb)
Proposed matrix multiplier 1560 4 19
Zhuo and Prasanna (2007) 4116 - 16
Fovanovic and Miliutinovic (2012) 1153 8 16

--: Not listed, LUT: Look-up-table and DSP: Digital signal processing

and it consumes 35.3% more LUTs than (Fovanovic and
Milutinovie, 2012). Despite of that fact, the proposed
matrix multiplier consumes only 37.9% LUTs of Zhuo and
Prasanna (2007), half of DSP resources of Fovanovic and
Milutinovic, 2012  and achieve higher frequency than
both of them.

Peak performance is another popular metric for
floating-point performance. As the matrix multiplication
designed in this study can complete one floating-point
multiplication and one floating-pomt addition m one clock
cycle, so the peak performance can be written as:

PERF = 2-P~F,,

where, P is the number of PE in the matrix multiplication,
F., 18 the working frequency. When the number of FE is
10, the peak performance of the matrix multiplication
designed in this study is 3600 MFLOPS. When the
number of PE is 20, it can achieve 7200 MFLOPS.

In the proposed MAC architecture, there is an
addition operation of the last N-stage pipeline data. As
the last N-stage data from pipeline adders have to be
stored to registers, for small matrices, it needs to wait each
PE completing calculation to avoid conflicts m the
registers’ data and the waiting time is non-ignorable
compared to the overall time. But when comes to large
matrices, the time of multiply accurnulation is long enough
for the last addition to fetch data from registers, so data
from memory can be fed into the MAC consecutively. In
this case, it only needs to wait for the last N-stage after all
PEs completing calculation. Compared to the overall
computing time, such time is so short that it can be
ignored. Assuming the dimension of the matrices A and
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Fig. 6(a-b). (a) Consumption of clock cycles with
different matrix size in MAC and (b) Ratio of
waiting time to the whole clock-cycle
consumption with different matrix size in
MAC, MAC: Multiplier accumulator

B are m*n and nxl, respectively, clock cycles for
computing are proportional to m=nx/10. If the dimension
of matrices A and B is equal, Fig. 6a and b show the clock
cycles the computing process of the matrix multiplication
consumes and the ratio of the waiting time to the whole
consumed clock cycles, respectively with 10 PEs. In the
Fig. 6a, the clock cycles are 46, 1440, 6438, 10038 and
80038, when the sizes of matrices are 10x10, 20%20, 40x40,
100x100 and 200x200, respectively. So with the size of
matrices increases, clock cycles of the computing require
increase following a cubic cuwve. However, as the
computing time of the last N-stage 1s fixed, the ratio of the
waiting time duration to the overall clock cycles is getting
smaller and smaller. It finally goes to 0.00037 and 0.000048
when the size of matrix goes to 100x100 and 200x200.
Thus, the matrix multiplier designed in this paper 18 more
suitable for large scale matrices.

CONCLUSION

This study proposes a novel architectwre for
pipelined MAC and implements matrix multiplier based on
the proposed MAC. The experiment results demonstrate
that the proposed architecture can effectively improve the
performance of the MAC and the matrix multiplication.
The number of PE and the dimension of matrices are
configurable in matrix multiplier, so the matrices can be

easily extended to any size. And the efficiency of the
matrix multiplier 1s even higher when the matrices are
larger. In the future work, designing a more efficient TP
core of MAC 1s necessary for inproving the computing
performance of matrix multiplier.
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