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Abstract
A unique design for an optimized N-bit multiplier is proposed and implemented which utilizes a modified divide-and-
conquer technique. The conventional technique requires four N/2-bit multipliers to perform N-bit multiplication, whereas 
the proposed design uses only one multiplier module in hardware to perform the functionality of four modules. It uses 
Dadda algorithm in its multiplier module. It has been implemented using Verilog HDL, and a good accuracy of results was 
observed in simulations which effectively verify its functionality. Design was also synthesized on various FPGAs includ-
ing Spartan 3E, Virtex-5 and Virtex-7. Performance summary, after place and route, showed that the proposed approach 
significantly reduces hardware utilization. Furthermore, the proposed design is almost 75% more efficient in terms of 
resources utilization and operating frequency as compared to the conventional design.
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1  Introduction

Multiplication is the most common, critical and widely 
used operation in many applications. The commonly used 
architectures include Baugh-Wooley and Booth multiplier. 
For multiplication of signed numbers, typically the Baugh-
Wooley multiplier is preferred [1]. Radix-2 and Radix-4 
booth multipliers were implemented in [2] for 8-bit and 
16-bit multiplication. It was claimed that Radix-4 booth 
multiplier utilizes less resources and achieves high speed. 
Vedic algorithm can be used to handle complex mathe-
matical problems and logic design [3], and it is a fast and 
low-power algorithm [4]. It solves numerous mathemati-
cal problems in 16 distinct ways. Researchers have also 
utilized Urdhva-Tiryakbhyam and Nikhilam multiplication 
algorithms. The former is a high-speed algorithm as the 
partial products are generated and added concurrently [5] 
while the latter one is more efficient in terms of hardware 

utilization [6]. An array multiplier is the simplest archi-
tecture but its drawback is its higher number of partial 
products as compared to the tree multipliers and hence it 
consumes more resources and time [7]. Wallace tree is also 
an advanced, pipelined, fast and highly used algorithm [8]. 
Xilinx also provides some tools to optimize the area, delay 
and power of the designed system. These tools have been 
realized in [9] on Dadda, Booth, Array and Wallace mul-
tipliers. They exhibited different properties in balanced, 
area-optimized, timing performance and power-optimized 
modes.

In [10], a re-configurable digit-serial multiplier is pro-
posed which used clock gating for power optimization but 
this work does not optimize the resource consumption 
of FPGA. A two-dimensional bypassing technique is used 
in [11] to design the multiplier, and the article focused on 
optimization of power consumption and delay, whereas the 
proposed approach presented in this article optimizes the 
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resource consumption of FPGA. In [12], a multiplexer-based 
8-bit multiplier is presented with 50 MHz frequency, whereas 
the proposed architecture achieves 320 MHz frequency for 
16-bit multiplication. E. George Walters III presents array 
multipliers using six-input LUTs and shift register LUTs [13], 
whereas the research presented in this article presents 
those using four-input LUTs. The modern FPGAs have built-
in multipliers in them but still the configurable multipliers 
using LUTs play a vital role in many applications due to their 
flexible size, placement and modification ability [13]. Many 
researchers have worked on the design of multipliers earlier, 
as reported in this section, but they have not explored the 
option of reusing the same resources using iterative meth-
ods. Some of the advanced digital signal processing (DSP) 
applications demand more resources. The significance of the 
proposed work lies in its ability to reuse its multiplier module 
for multiple iterations. Therefore, by reducing the resources 
for the multiplication process, this work allows the designer 
to dedicate more resources for other modules in complex 
applications.

It can be concluded from literature review that Dadda 
algorithm is the most efficient in speed [14], while array mul-
tiplier shows the longest delay. Moreover, a brief compari-
son of Dadda and Wallace tree multipliers, as presented in 
[15], concluded that the Dadda multiplier is better in terms 
of speed and complexity than the Wallace tree multiplier. 
Dadda algorithm for tree reduction is usually used for reduc-
ing the propagation delay in the addition process of partial 
products.

Dadda algorithm can be used for 16-bit or higher order 
multiplication but with the increase in number of bits, the 
complexity also increases. For a 4-bit Dadda multiplier, 
the maximum tree height of partial products is four and 
reduction stages are three [16]. When the same algorithm 
is utilized to perform 8-bit multiplication, the tree height 
increases to six and reduction stages increase to four [17], 
thereby increasing the resources consumption and delay. 
To address this issue, a hybrid technique is developed in this 
article to perform 16-bit multiplication that uses 8-bit Dadda 
multiplier and divide-and-conquer technique.

2 � Multiplication technique

Divide-and-conquer algorithm allows to perform multiplica-
tion process by dividing an N-bit number into two N/2-bit 
numbers. It executes series of multiplications and then per-
forms the addition of partial products (PP) [18]. 

Referring to Fig. 1, we have two 16-bit numbers A and B 
which are expressed as:

(1)A = AH.k + AL

(2)B = BH.k + BL

Where AH and BH are the most significant half bits of each 
number, AL and BL are the least significant half, while 
k = 2n∕2 [18]. If the value of k is 21, then it represents single-
bit left shift. Therefore, if we have 16-bit number, then 28 
would represent a left shift of eight bits. The product of 
both numbers can be expressed as:

Multiplication will be performed using 8 bits from each 
number in a single iteration. The partial products (PP) can 
be written as:

The partial products (PP) are comprised of 16 bits. These 
partial products are further divided into two equal parts 
as:

Partial products are added after proper alignment to 
get the final product (FP) as per the following equations:

(3)

A ⋅ B =
(

AH ⋅ BH ⋅ k
2
)

+
(

(AH ⋅ BL + AL ⋅ BH) ⋅ k
)

+ AL.BL

(4)PP1 = AL × BL

(5)PP2 = AL × BH

(6)PP3 = AH × BL

(7)PP4 = AH × BH

PP1A = 7 − 0 bits (LSBs) of PP1

PP1B = 15 − 8 bits (MSBs) of PP1

PP2A = 7 − 0 bits (LSBs) of PP2

PP2B = 15 − 8 bits (MSBs) of PP2

PP3A = 7 − 0 bits (LSBs) of PP3

PP3B = 15 − 8 bits (MSBs) of PP3

PP4A = 7 − 0 bits (LSBs) of PP4

PP4B = 15 − 8 bits (MSBs) of PP4

(8)FP[7∶0] = PP1A

Fig. 1   Divide-and-conquer methodology (16-bit number)
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However, multiple adders are utilized to execute Eqs. 
(9–11) and the carry of each stage is added to the next 
stage. Details of the adder block are available in the later 
section. Similar concept can be used for higher bits.

3 � Proposed optimized design

Conventionally, four multiplication processes of divide-
and-conquer technique are implemented using four dedi-
cated N/2-bit multipliers. It performs all multiplication pro-
cesses at a time. Inputs at all four modules arrive at a time, 
and they produce partial products, respectively. A good 
optimization approach is to reuse the allocated resources 
on proper time intervals instead of dedicating each block 
of the design to only one iteration.

We propose a novel design to achieve N-bit multiplier 
using only one N/2-bit multiplier module. This concept 
is demonstrated for 16-bit multiplication using only one 
8-bit multiplier module. It is a combination of divide-and-
conquer mechanism and Dadda algorithm. The architec-
ture and design of the proposed approach are given in 
Fig. 2.

A 2-bit counter is used to drive multiplexer (MUX) and 
decoder. Outputs of the multiplexers are attached to the 

(9)FP[15∶8] = PP1B + PP2A + PP3A

(10)FP[23∶16] = PP4A + PP2B + PP3B

(11)FP[31∶24] = PP4B

inputs of multiplier. To produce four partial products, an 
8-bit Dadda multiplier is used. Its outputs are stored in 
data registers, which are getting enable signal from the 
output of decoder. A finite state machine (FSM), as shown 
in Fig. 3, describes the complete cycle of iterations of the 
proposed design approach. This FSM shows that one par-
tial product is produced in each state which is stored on 
only two data registers that are getting an active high sig-
nal from the decoder. The addition of products is similar 

Fig. 2   Architecture and design of 16-bit multiplier module

Fig. 3   FSM of 16-bit multiplier module
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to conventional approach. Detailed description is given in 
the following sections.

3.1 � Counter

A 2-bit up counter is used in this design to synchronize the 
multiplier inputs with respective storage registers. It resets 
its value to zero on reaching overflow state. The outputs 
of counter are connected to the MUX select lines as well 
as the decoder inputs.

3.2 � Multiplexers

As in the proposed approach, there is only one multiplier 
module to produce four partial products. Therefore, the 
multiplier does not take the input values directly; it rather 
utilizes the multiplexers to generate partial products using 
four iterations. The inputs A and B are attached to the mul-
tiplexers as shown in Fig 2.

In this way, the inputs to multiplier will change accord-
ing to the change in select lines of both multiplexers. Mul-
tiplexers will change their outputs according to Table 1.

3.3 � Decoder

A 2–4 decoder provides enable signals to all data registers. 
Each of its output lines is connected to two registers. The 
MSBs and LSBs of multiplier output are stored in these reg-
isters separately. Although the output data are available 
to all eight data registers, the ones with high enable lines 
store the data. The decoder provides enable signals to the 
registers according to Table 2.

3.4 � Multiplier module

The 8-bit Dadda multiplier performs four multiplication 
operations to produce PP1 , PP2 , PP3 and PP4 according to 
Eqs. 4–7. Dadda algorithm is usually used for reducing the 
propagation delay in the addition process of the partial 
products. The finite state machine of the proposed multi-
plication sequence is shown in Fig. 3 which uses the coun-
ter’s output sequence to generate partial products.

3.5 � Adders

The addition of the partial products was accomplished 
by utilizing ripple carry adder since it is an area-efficient 
and less complex technique [19, 20]. Multiple adders have 
been used to carry out the addition of partial products 
to get the final product according to Eqs. (8–11). In sin-
gle iteration, the adder can take only two inputs. There-
fore, the addition process is further divided into multiple 
steps and the proposed design utilizes five 8-bit adders as 
shown in Fig. 2.

4 � Results and comparison

The verification of the proposed algorithm was done by 
using multiple simulation environments. The design has 
been implemented using Verilog HDL and tested against 
various sets of inputs for multiplication. A good agree-
ment between theoretical and simulation results was 
observed. The design was also implemented on various 
FPGAs including Spartan 3E (xc3s500-5fg320), Virtex-7 
(xc7vx485t-3 ffg1157) and Virtex-5(xc5vlx20t-2ff323) 
to compare the resource utilization. The design is fully 
synthesizable, and estimation of all the resources was 
obtained after successful place and route process. Table 3 
summarizes the resource utilization to verify the improved 
performance of the proposed design.

To demonstrate the fact that the improved results are 
due to the proposed architecture instead of the tools 
and technology, the design has been compared to the 
relevant literature which utilized the same technology 
and tools as used in this work. The proposed design was 
compared with [7] and [4], and the comparison results 
are tabulated in Table 4. The proposed design requires 
approximately 70% fewer resources (including flip-flops, 
LUTs and slice registers) as compared with [7] and [4] 
to produce the same multiplication. The reduction in 
LUTs is 73%, 74%, 77% and 81% as compared to the 
conventional approaches which utilized array, Dadda, 
Wallace and Vedic algorithms, respectively. Reduction 
in resources is due to the utilization of 75% less 8-bit 

Table 1   MUX outputs

Counter output MUX 1 output MUX 2 output

Count [0] Count [1]

0 0 A
L

B
L

0 1 A
L

B
H

1 0 A
H

B
L

1 1 A
H

B
H

Table 2   Decoder and data registers

Decoder input Decoder output Active 
data 
registersCount [0] Count [1]

0 0 Y0 PP1
0 1 Y1 PP2
1 0 Y2 PP3
1 1 Y3 PP4
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multiplier modules as compared to the conventional 
technique. One module of an 8-bit Dadda multiplier 
requires seven half adders and 49 full adders. Each 
half adder contains five universal gates, and each full 
adder contains nine universal gates. The proposed work 
reduces three 8-bit multipliers. The implementation 
of three 8-bit multipliers require approximately 1428 
gates. The additional components used to implement 
this approach are two multiplexers, one counter and one 
decoder which require approximately 4, 20 and 6 gates, 
respectively. Overall the proposed design reduces the 
gate count by almost 1400 gates. It also achieves 75% 
more operating frequency. Therefore, we conclude that 
the proposed design is more resource efficient than the 
conventional approach.

As the proposed design produces only one partial prod-
uct at a time, it needs more iterations to perform complete 
multiplication process but it uses less resources. Conse-
quently, there is a trade-off between resource consump-
tion and number of iterations. Nevertheless, the proposed 
architecture has been designed with good optimization 
techniques which achieves high frequency leading to very 
quick process of iterations. Hence, this design not only 
reduces the resource utilization but is also fast as com-
pared to the previous designs.

5 � Conclusion

This article has presented a novel approach to design a 
multiplier by modifying the divide-and-conquer algo-
rithm and optimizing it for resource utilization. For mul-
tiplication process, it uses Dadda algorithm. The design 
reduces the hardware multiplier modules from four to 
one, and therefore, it uses three times less resources as 
compared to the conventional approach. The proposed 
design can be operated at a higher frequency as com-
pared to previous designs, which also makes it suitable 
for high-speed applications. It has been tested on vari-
ous FPGAs to validate the results.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Table 3   Performance summary 
of the proposed design

FPGA resources Spartan 3E xc3s500-5 
fg320

Virtex-7 xc7vx485t-3 
ffg1157

Virtex-5 xc5vlx20t-2 ff323

Used/available Used/available Used/available

Occupied slices 133/4656 43/75900 60/3120
Slice register 62/9312 52/607200 52/12480
Bounded IOBs 67/232 67/600 67/172
Slice LUTs 228/9312 131/303600 131/12480
Flip-flops 62/9312 52/607200 52/12480
DSP48E – 2/2800 2/24
Min. period(ns) 3.118 1.57 2.69
Freq. (MHz) 320.7 634.51 370.78
Delay (ns) 38.319 8.80 14.87

Table 4   Comparative analysis 
of 16-bit multipliers with the 
proposed design

Proposed [7]  [4]

Year 2019 2016 2016
FPGA Spartan 3E xc3s500-5fg320 Spartan 3E xc3s500-5fg320 Spartan 3E
Algorithm Dadda, Divide & Conquer Array Dadda Wallace Vedic
Slice register 132 493 493 493 493
Bounded IOBs 67 66 66 66 66
4 input LUTs 228 844 899 1000 1243
Flip-flops 62 492 492 492 -
Freq. (MHz) 320.7 79.10 70.03 80.205 -
Delay (ns) 38.319 61.39 55.65 36.35 38.82
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