
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220849794

Performance Analysis of Fast Adders Using VHDL

Conference Paper · January 2009

DOI: 10.1109/ARTCom.2009.132 · Source: DBLP

CITATIONS

19
READS

3,739

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Detection, Quantification and Classification of Insects/Eggs on Crops using Foldscope combined with smartphones. View project

Codped DMS for Spintronics Applications View project

Raminder Singh

Sri Sai University

31 PUBLICATIONS 226 CITATIONS

SEE PROFILE

Balwinder singh Lakha

Centre for Development of Advanced Computing

145 PUBLICATIONS 490 CITATIONS

SEE PROFILE

All content following this page was uploaded by Raminder Singh on 19 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220849794_Performance_Analysis_of_Fast_Adders_Using_VHDL?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220849794_Performance_Analysis_of_Fast_Adders_Using_VHDL?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Detection-Quantification-and-Classification-of-Insects-Eggs-on-Crops-using-Foldscope-combined-with-smartphones?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Codped-DMS-for-Spintronics-Applications?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raminder-Singh?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raminder-Singh?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sri-Sai-University?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raminder-Singh?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Balwinder-Lakha?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Balwinder-Lakha?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centre-for-Development-of-Advanced-Computing?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Balwinder-Lakha?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raminder-Singh?enrichId=rgreq-bf0ac4a252c43bf5783a2dcd5c7217fc-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg0OTc5NDtBUzo3MjgwNjQzMzgxNjU3NjVAMTU1MDU5NTQ3MzcyOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Performance Analysis Of Fast Adders

Using VHDL

 R.P.P. Singh Parveen Kumar Balwinder Singh
 ECE Department ECE Department VLSI-ES Division, Centre for

 Sri Sai College of Engg. & Tech. Beant College of Engg. & Tech. Development & Advanced Computing

 Badhani (Pathankot), India Gurdaspur (Punjab), India (CDAC), Mohali
raminder_212003@rediffmail.com parveen.klair@gmail.com balwinder_cdacmohali@yahoo.com

Abstract—This paper presents performance analysis of

different Fast Adders. The comparison is done on the basis

of three performance parameters i.e. Area, Speed and Power

consumption. Further, we present a design methodology of

hybrid carry lookahead/carry skip adders (CLSKAs). This

modified carry skip adder is modeled by using both fix and

variable block size. In conventional carry skip adder, each

block consists of ripple carry adder and skip logic is used

after each block to generate carry for next block. The speed

of operation depends on carry propagation from previous

block to next block. In CLSKAs, we use carry lookahead

logic in each block to generate carry for next block. The

modified carry skip adders presented in this paper provides

better speed and power consumption as compare to

conventional carry skip adder and other adders like ripple

carry adder, carry lookahead adder, Ling adder, carry select

adder. The modified carry skip adders with fix block require

few more CLB’s because of Carry lookahead logic, whereas

with variable block scheme, area optimization is achieved.

Keywords— Adder, Ripple Carry Adder, Look Ahead

Carry Adder, VHDL Simulation

I. INTRODUCTION

Adders are most commonly used in various electronic
applications e.g. Digital signal processing in which adders
are used to perform various algorithms like FIR, IIR etc. In
past, the major challenge for VLSI designer is to reduce
area of chip by using efficient optimization techniques.
Then the next phase is to increase the speed of operation to
achieve fast calculations like, in today’s microprocessors
millions of instructions are performed per second. Speed
of operation is one of the major constraints in designing
DSP processors. Now, as most of today’s commercial
electronic products are portable like Mobile, Laptops etc.
that require more battery back up. Therefore, lot of
research is going on to reduce power consumption.
Therefore, there are three performance parameters on
which a VLSI designer has to optimize their design i.e.
Area, Speed and Power. It is very difficult to achieve all
constraints for particular design, therefore depending on

demand or application some compromise between
constraints has to be made.

II PRIOR WORK

In 1990, modified Carry-Skip Adders was presented by
reducing first block delay with carry-lookahead adders
using multidimensional dynamic programming [12]. In
1996, transistor-level simulation of the adders using
HSPICE is done for area, time and power trade-off
between different fast adders [6]. In 2002, a new concept
of hybrid adders is presented to speed up addition process
by Wang et al. that gives hybrid carry look-ahead/carry-
select adders design [7]. In 2007, a new 54×54-bit
multiplier is designed using high-speed carry-look-ahead
adder and has been fabricated by CMOS technology [4]. In
2008, low power multipliers based on new hybrid full
adders is presented [5]. In 2008, Hasan Krad et al worked
on the performance analysis for a 32-Bit Multiplier with a
Carry-Look-Ahead Adder and a 32-bit Multiplier with a
Ripple Adder using VHDL [3].

III FAST PARALLEL ADDERS

A. Ripple Carry Adder (RCA)

Ripple carry adder can be designed by cascading full

adder in series i.e. carry from previous full adder is

connected as input carry for the next stage. Full adder is a

basic building block of Ripple carry adder. Therefore, to

design n-bit parallel adder, it requires n full adders. In our

design we use 16 full adders to design a 16-bit parallel

adder. The major limitation of Ripple carry adder is that

as the bit length goes on increases, delay also increases.

Therefore, Ripple carry adder is not suitable if large

number bits are to be added.

The major element that causes delay is carry propagation,

therefore it is important to calculate carry delay from input

to output. For n-bit Ripple carry adder, Delay for carry can

be calculated as: -

TC = TFA ((x0, y0) to c0) + (n-2) * TFA (cin to cout)) +

TFA (cin to sout (n-1)) (1)

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.132

189

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.132

189

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.132

189

FIGURE 1: Schematic block diagram of 16-bit ripple carry adder .

Where TFA (input to output) represent the delay of full
adder on the path between it’s specified input and output.

A. Condition Carry Adder (CCA)

Condition carry adder is based on the principle shown

in figure.2. In this case instead of computing sum and

carry directly by using full adder, it computes sum and

carry depending upon status of previous carry i.e.

1. If ci = 0 then

Si = ai xor bi & ci+1 = ai and bi (2)

2. If ci = 1 then

 Si = ai xnor bi & ci+1 = ai or bi (3)

A logarithmic time condition sum adder results if we

proceed to the extreme of having single-bit adder at the

very top. Thus taking the delay of 2-to-1 multiplexer as

our units, the delay of a condition sum adder are

characterized by the following recurrences:

 T (k) = Log2 k + T (1) (4)

FIGURE 2: Single-bit position of Condition sum adder [1].

Where T (1) is the delay of circuit shown in figure.2,

which is used at the top to derive the sum and carry bits

with a carry-in of 0 and 1. An exact analysis leads to a

comparable count for the number of single-bit multiplexers

needed in a condition-sum adder. Assuming that K is a

power of 2, the required number of multiplexers for a k-bit

adder is:

 (k - 1)(Log2 k + 1) (5)

B. Lookahead Carry Adder (CLA)

Lookahead carry algorithm speed up the operation to
perform addition, because in this algorithm carry for the
next stages is calculated in advance based on input signals.
If X and Y are two inputs, “ci” is initial carry, “sout” and
“cout” are output sum and carry respectively, then Boolean
expression for calculating next carry and addition is:

Pi = xi xor yi --- Carry Propagation (6)

Gi = xi and yi --- Carry Generate (7)

Ci+1 = Gi or (Pi and Ci)--Next Carry (8)

Figure.3 shows 16-bit look ahead carry adder that consists

of four 4-bit adders each 4-bit look ahead carry generator.

The latency through this 16-bit adder consists of the time

required for:

1. Producing the G and P for individual bit

positions (1 gate level).

2. Producing the G and P signals for 4-bit blocks (2

gate levels).

FIGURE 3: Schematic block diagram of 16-bit carry look ahead adder

divided into 4 blocks [2].

3. Predicting the carry-in signals c4, c8 and c12 for

the blocks (2 gate levels).

4. Predicting the internal carries within each 4-bit

block (2 gate levels).

5. Computing the sum bits (2 gate levels).
Thus the total latency for 16-bit adder is a 9-gate level

that is very less as compared to 16-bit ripple carry adder

that is 32 gate levels. Thus, the delay of N-bit carry look-

ahead adder based on 4-bit look-ahead blocks is:

TCLA = 4 log4 N + 1 gate levels (9)

C. Ling Adder Design

The Ling Adder is a type of Look-Ahead Adder with a

slight modification that results in significant hardware

saving. Ling’s modification consists of propagating hi = ci

+ ci-1 instead of ci. This results in reduction of number of

gates required for implementation. Therefore, the Boolean

expression for calculating next carry and sum are:

 Ci = hi (Gi-1 + Pi-1) (10)

 Si = Pi xor hi (Gi-1 + Pi-1) (11)

D. Manchester Carry Chain Adder

Similar to Ling’s adder design, Manchester adder is also a

type of Carry look-ahead adder. Manchester adder gives

slight modification in calculating next carry to be

propagated i.e. instead of using Boolean expression Ci+1 =

Gi + Ci Pi to calculate next carry Manchester carry adder

uses expression:

 Ci+1=Gi +Ci ti (12)

 ti = Xi + Yi (13)

Thus, we can say that carry recurrence can be written in

terms of ti instead of Pi, which leads to slightly faster

adder because in binary addition, ti is easier to produce

than Pi (OR instead of XOR). Table1 and figure.4 shows

comparative study of 16-bit Manchester carry adder with

190190190

Carry look-ahead adder in terms of delay. CPLD XC9572

is used for implementation.

TABLE1: 16-BIT CARRY LOOK-AHEAD AND MANCHESTER ADDER

DESIGN COMPARISON FOR AREA AND DELAY

Adders

Macrocells Used Pad

Delay

Delay

(ns)

Delay (ns)

 Sum Carry

CLA 31/72 (44%) 52 52 51

MCA 35/72 (49%) 53 51 33

31

52 52 51

35

53 51

33

0

10

20

30

40

50

60

Sum Carry

Macrocells

Used

tPD Delay (ns) Delay (ns)

CLA

MCA

FIGURE 4: Graphical representation of Simulated results

E. Conventional Carry Skip Adder(CCSKA)

In case of N-bit Ripple carry adder, carry has to
propagate through all N stages, which results in large
delay in performing binary addition. In contrast, it is
possible to skip carry over group of n-bits in case of Carry
Skip Adder.

This results in less delay as compare to ripple carry
adder. The worst-case carry propagation delay in a N-bit
carry skip adder with fixed block width b, assuming that
one stage of ripple has the same delay as one skip, can be
derived:

TCSKA =(b -1)+0.5+(N/b-2)+(b -1) (14)

= 2b + N/b – 3.5 Stages (15)

Therefore, 8.5 Stages are required for 16-bit Carry

Skip Adder that results in latency of 17 gate levels as

compare to 32 gate levels required for 16-bit Ripple carry

adder. Figure.5 shows 16-bit Carry-Skip Adder divided

into 4 blocks and each block are a 4-bit Ripple Carry

Adder.

FIGURE 5: 16-Bit Carry-Skip Adder [1].

From equation (xi), it is observed that latency is

directly proportional to block width i.e. if we decrease

block width, then more number of blocks are required to

make N bit adder which results in increase in latency

because more number of skips are required between stages

and vice-versa. Figure6 and table2 shows the simulated

results in terms of delay achieved for 16-bit Carry skip

adder-using width of 4 blocks, 2 blocks and 8 blocks.

TABLE2: 16-BIT CARRY SKIP ADDER USING 4 BLOCKS, 2 BLOCKS AND 8
BLOCKS.

Carry Skip

Adder CLB'S

Delay

(ns)

Delay

(ns)

Power

(mW)

Power

(mW)

16-bit Sum Carry Dynamic Static

4 blocks 23 23.2 23.1 16.3 219.71

2 blocks 26 20.8 21.7 16.1 219.69

8 blocks 24 26.6 24.5 14.8 219.54

 FIGURE 6: Simulated Results of Table1

F. Modified Carry Skip Adder (CLSKAs)

 In conventional carry skip adder, each block consists
of ripple carry adder and skip logic is used after each block
to generate carry for next block. The speed of operation
depends on carry propagation from previous block to next
block. In CLSKAs, we use carry lookahead scheme in
each block to generate carry for next block. This result in
better performance in terms of speed as look ahead carry
adder is faster than ripple carry adder. Figure7 shows
modified CLSKA with fixed block size i.e. 4-bit each.

FIGURE 7: A 16-bit hybrid CLSKA with 4-bit block adders.

0

5

10

15

20

25

30

4 blocks 2 blocks 8 blocks

CLB'S

Delay (ns) Sum

Delay (ns) Carry

Power (mW) Dynamic

191191191

Now, next is another concept of designing adder by
using variable block size [12]. Figure8 shows CLSKA
model in which size of block is variable. Here, we use two
full adders

 FIGURE 8: A 16-bit hybrid CLSKA with variable block size.

G. Carry Select Adder (CSA)

 Carry select adder is based on the principle to

calculate sum that is based on assuming input carry from

previous stage. One adder calculates the sum assuming

input carry of 0 while the other calculates the sum

assuming input carry of 1. Then, the actual carry triggers a

multiplexer that selects the appropriate sum [2]. Fig.9

shows the schematic block diagram of 16-bit Carry select

adder consists of 4-blocks each of 4-bit Look ahead carry

adder [11]. Carry output of each block is fed into next

block as input carry.

FIGURE 9: Schematic block diagram of 16-bit Carry select adder [2].

I. CARRY SAVE ADDER

Basically, carry save adder is used to compute sum of

three or more n-bit binary numbers. Carry save adder is

same as a full adder. But as shown in figure.10, here we

are computing sum of two 16-bit binary numbers, so we

take 16 half adders at first stage instead of using 16 full

adders. Therefore, carry save unit consists of 16 half

adders, each of which computes single sum and carry bit

based only on the corresponding bits of the two input

numbers. Let x and y are two 16 bit numbers and produces

partial sum and carry as s and c as shown in table3:

 Si = xi xor yi (16)

 Ci = xi and yi (17)

The final addition is then computed as:

1. Shifting the carry sequence C left by one place.

2. Placing a 0 to the front (MSB) of the partial sum

sequence S.

3. Finally, a ripple carry adder is used to add these

two together and computing the resulting sum.

TABLE 3: CSA COMPUTATION

 X: 1 0 0 1 1

 Y: + 1 1 0 0 1
 S: 0 1 0 1 0

 C: 1 0 0 0 1
 Sum: 1 0 1 1 0 0

FIGURE 10: Computation flow of CSA

When adding together two numbers, using a half adder
followed by a ripple carry adder is faster than using two
ripple carry adders. This is because a ripple carry adder
cannot compute a sum bit without waiting for the previous
carry bit to be produced, and thus has a delay equal to that
of n full adders. A carry-save adder, however, produces all
of its output values in parallel, thus the total computation
time for a carry-save adder is less than ripple carry adders.

IV. RESULTS AND DISCUSSION

To demonstrate the performance of modified carry skip
adder we compare it with other adders like ripple carry
adder, lookahead carry adder Ling adder, carry select
adder, carry save adder. We design all adders using VHDL
(Very High Speed Integration Hardware Description
Language) for 16-bit unsigned data. To get power, delay
and area report, we use XILINX 9.1 i as synthesis tool and
Modelsim XE III 6.2g for simulation. FPGA-Spartan III is
used for implementation. The modified Carry Skip adder
architecture (hybrid carry lookahead/carry skip adders)
with fix block size (four blocks of 4-bit each) gives better
result than other adders in terms of Speed (Delay=15.0 ns)
but require more Area (29 CLB’s) and power consumption
(Dynamic Power=13.9mW) whereas with variable block

192192192

size architecture, power consumption and area (26 CLB’s)
also improve.

TABLE 4: AREA, POWER AND DELAY REPORT FOR ADDERS

ADDERS (With Fix

Block Size) CLB'S

Delay

(ns)

Delay

(ns)

Power

(mW)

Power

(mW)

Block Size = 4-Bit Sum Carry Dynamic Static

Ripple Carry 24 24.1 23.5 7.6 218.7

Conditional carry 24 23.9 23.3 7.6 218.7

Look Ahead 26 20.9 20.6 13.3 219.4

Lings 20 23.3 23.1 13.3 219.4

Carry Select 27 17.1 17.7 10.1 219

Carry Save 29 23.1 22.8 9 218.9

Conventional Carry

Skip Adder 23 23.2 23.1 16.3 219.7

 Modified carry Skip

Adder 29 15 14.6 13.9 219.4

TABLE 5: AREA, POWER AND DELAY REPORT FOR ADDERS

ADDERS (With

Variable Block

Size) CLB'S

Delay

(ns)

Delay

(ns)

Power

(mW)

Power

(mW)

2 Χ 7-bit + 2 Χ 1-bit Sum Carry Dynamic Static

Ripple Carry 24 22.9 22.5 7.9 218.7

Look Ahead 24 25.3 24.3 7.6 218.7

Conventional Carry

 Skip Adder 26 22.3 20.5 14.9 219.5

Modified carry Skip

Adder 26 16.8 12.2 13.8 219.5

0

10

20

30

40

R
C
A

C
C
A

C
LA

Li
ng

s

C
S
LA

C
SA

C
C
SK

A

C
LS

K
A

CLB'S Delay (ns) Sum
Delay (ns) Carry Power (mW) Dynamic

FIGURE 11: Performance comparison of adders

0

5

10

15

20

25

30

Ripple Carry Look Ahead CCSKA CLSKA

CLB'S Delay (ns) Sum
Delay (ns) Carry Power (mW) Dynamic

FIGURE 12: Performance comparison of adders

V. CONCLUSION

From the results and discussion, it is observed that
there are trade-offs between performance parameters i.e.
Area, Power and Delay. For designing delay efficient
adder, we have proposed a hybrid carry lookahead/carry
skip adders in which carry lookahead logic is used instead
of ripple carry adder in each block to generate output sum
and carry bit for next block. This result in fast operation
but at the cost of few more CLB’s due to carry lookahead
logic.

VI. REFERENCES

[1] B. Parhami, Computer Arithmetic, Algorithm and Hardware

Design, Oxford University Press, New York, pp. 91-119, 2000.

[2] Pong P. Chu “RTL Hardware Design Using VHDL: coding for
Efficiency, Portability and Scalability” Wiley-IEEE Press, New
Jercy, 2006

[3] Hasan Krad and Aws Yousif Al-Taie, “Performance Analysis of a
32-Bit Multiplier with a Carry-Look-Ahead Adder and a 32-bit
Multiplier with a Ripple Adder using VHDL”, Journal of
Computer Science 4 (4): 305-308, 2008

[4] Asadi, P. and K. Navi “A novel high-speed 54-54-bit multiplier”,
Am. J. Applied Sci., 4 (9): 666-672, 2007

[5] Z. Abid, H. El-Razouk and D.A. El-Dib, “Low power multipliers
based on new hybrid full adders”, Microelectronics Journal,
Volume 39, Issue 12, Pages 1509-1515, 2008

[6] Nagendra, C.; Irwin, M.J.; Owens, R.M.,“Area-time-power
tradeoffs in parallel adders”, Circuits and Systems II: Analog and
Digital Signal Processing, IEEE Transactions on Volume 43, Issue
10, Page(s): 689 – 702, 1996

[7] Wang, Y.; Pai, C.; Song, X., “The design of hybrid carry look-
ahead/carry-select adders, Circuits and Systems II: Analog and
Digital Signal Processing, IEEE Transactions on Volume 49,
Page(s): 16-24, 2002.

[8] May Phyo Thwal, Khin Htay Kyi, and Kyaw Swar Soe,
“Implementation of Adder-Subtracter design with VerilogHDL”,
International Journal of Electronics, Circuits and Systems Volume
2 number 3, 2008

[9] Min Cha and Earl E. Swartzlander, Jr, “Modified Carry Skip
Adder for reducing first block delay”, Proc. 43rd IEEE Midwest
Symp. on Circuits and Systems, Lansing MI, Page(s): 346-348,
2000

[10] Behnam Amelifard, Farzan Fallah, Massoud Pedram, “Closing the
gap between Carry Select Adder and Ripple Carry Adder: A new
class of Low-power and High-performance Adders”, Proceedings
of the Sixth International Symposium on Quality Electronic Design
(ISQED’05) , 2005

[11] Jin-Fu Li, Jiunn-Der Yu, Yu-Jen Huang, “A Design Methodology
for Hybrid Carry-Lookahead/Carry-Select Adders with
Reconfigurability”, IEEE, 2005

[12] Pak K. Chan, et al, Delay Optimization of Carry-Skip Adders and
Block Carry-Lookahead Adders Using Multidimensional Dynamic
Programming, IEEE Transactions on Computers, vol. 41, No. 8,
pp. 920-93, 1992

193193193

View publication statsView publication stats

https://www.researchgate.net/publication/220849794

