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Abstract

This thesis investigates methods of implementing binary multiplication with the smallest

possible latency. The principle area of concentration is on multipliers with lengths of 53

bits, which makes the results suitable for IEEE-754 double precision multiplication.

Low latency demands high performance circuitry, and small physical size to limit prop-

agation delays. VLSI implementations are the only available means for meeting these two

requirements, but efficient algorithms are also crucial. An extension to Booth’s algorithm

for multiplication (redundant Booth) has been developed, which represents partial products

in a partially redundant form. This redundant representation can reduce or eliminate the

time required to produce "hard" multiples (multiples that require a carry propagate addi-

tion) required by the traditional higher order Booth algorithms. This extension reduces the

area and power requirements of fully parallel implementations, but is also as fast as any

multiplication method yet reported.

In order to evaluate various multiplication algorithms, a software tool has been devel-

oped which automates the layout and optimization of parallel multiplier trees. The tool

takes into consideration wire and asymmetric input delays, as well as gate delays, as the tree

is built. The tool is used to design multipliers based upon various algorithms, using both

Booth encoded, non-Booth encoded and the new extended Booth algorithms. The designs

are then compared on the basis of delay, power, and area.

For maximum speed, the designs are based upon a 0:6� BiCMOS process using emitter

coupled logic (ECL). The algorithms developed in this thesis make possible 53x53 mul-

tipliers with a latency of less than 2.6 nanoseconds @ 10.5 Watts and a layout area of

13mm2. Smaller and lower power designs are also possible, as illustrated by an example

with a latency of 3.6 nanoseconds @ 5.8 W, and an area of 8:9mm2. The conclusions based
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upon ECL designs are extended where possible to other technologies (CMOS).

Crucial to the performance of multipliers are high speed carry propagate adders. A

number of high speed adder designs have been developed, and the algorithms and design

of these adders are discussed.

The implementations developed for this study indicate that traditional Booth encoded

multipliers are superior in layout area, power, and delay to non-Booth encoded multipliers.

Redundant Booth encoding further reduces the area and power requirements. Finally, only

half of the total multiplier delay was found to be due to the summation of the partial

products. The remaining delay was due to wires and carry propagate adder delays.
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Chapter 1

Introduction

As the performance of processors has increased, the demand for high speed arithmetic

blocks has also increased. With clock frequencies approaching 1 GHz, arithmetic blocks

must keep pace with the continued demand for more computational power. The purpose

of this thesis is to present methods of implementing high speed binary multiplication. In

general, both the algorithms used to perform multiplication, and the actual implementation

procedures are addressed. The emphasis of this thesis is on minimizing the latency, with

the goal being the implementation of the fastest multiplication blocks possible.

1.1 Technology Options

Fast arithmetic requires fast circuits. Fast circuits require small size, to minimize the delay

effects of wires. Small size implies a single chip implementation, to minimize wire delays,

and to make it possible to implement these fast circuits as part of a larger single chip

system to minimize input/output delays. Even for single chip implementations, a number

of choices exist as to the implementation technology and architecture. A brief review of

some of the options is presented in order to provide some motivation as to the choices that

were made for this thesis.
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CHAPTER 1. INTRODUCTION 2

1.1.1 CMOS

CMOS (Complementary Metal Oxide Semiconductor) is the primary technology in the

semiconductor industry at the present time. Most high speed microprocessors are imple-

mented using CMOS. Contemporary CMOS technology is characterized by :

� Small minimum sized transistors, allowing for dense layouts, although the intercon-

nect limits the density.

� Low Quiescent Power - The power consumption of conventional CMOS circuits is

largely determined by the AC power caused by the charge and discharge of capaci-

tances :

Power / CV2f (1.1)

where f is the frequency at which a capacitance is charged and discharged. As the

circuits get faster, the frequency goes up as does the power consumption.

� Relatively simple fabrication process.

� Large required transistors - In order to drive wires quickly, large width transistors are

needed, since the time to drive a load is given by :

∆t = C
∆V

i
(1.2)

where :

∆t is the time to charge or discharge the load

C is the capacitance associated with the load

∆V is the load voltage swing

i is the average current provided by the load driver

� Large voltage swings - Typical voltage swings for contemporary CMOS are from

3.3 to 5 volts (with even smaller swings on the way). All other things being equal,

equation 1.2 says that a smaller voltage swing will be proportionally faster.

� Good noise margins.



CHAPTER 1. INTRODUCTION 3

BiCMOS

BiCMOS generally refers to CMOS-BiCMOS where bipolar transistors are used to improve

the driving capability of CMOS logic elements (Figure 1.1). In general this will improve

Vdd

OutIn

Figure 1.1: BiCMOS (BiNMOS) buffer.

the driving capability of relatively long wires by about a factor of two [2] [22]. A parallel

multiplier does indeed have some long wires, and the long wires contribute significantly

to the total delay, but the delay is not dominated by the long wires. A large number of

short wires also contribute significantly to delay. The net effect is perhaps a 20 to 30%

improvement in performance. The addition of the bipolar transistors increases the process

complexity significantly and it is not clear that the additional complexity is worth this level

of improvement.

1.1.2 ECL

ECL (emitter coupled logic) [20] uses bipolar transistors exclusively to produce various

logic elements (Figure 1.2). The primary advantage of bipolar transistors is that they have

an exponential turn-on characteristic, that is the current through the device is exponentially

related to the base-emitter voltage. This allows extremely small voltage swings (0.5V)

in logic elements. Referring back to Equation 1.2, this results in a proportional speed up
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Vee

Out

In Vb

Vcs

Figure 1.2: ECL inverter.

in the basic logic element. For highest speed the bipolar transistors must be kept from

saturating, which means that they must be used in a current switching mode. Unlike CMOS

or BiCMOS, logic elements dissipate power even if the element is not switching, resulting in

a very high DC power consumption. The total power consumption is relatively independent

of frequency, so even at extremely high frequencies the power consumption will be about the

same as the DC power consumption. In contrast, CMOS or BiCMOS power increases with

frequency. Even at high frequencies, CMOS probably has a better speed-power product

than ECL, but this depends on the exact nature of the circuitry. A partial solution to the

high power consumption problem of ECL is to build relatively complex gates, for example

building a full adder directly rather than building it from NOR gates. Other methods of

reducing power are described in Chapter 4.

Differential ECL

Differential ECL is a simple variation on regular ECL which uses two wires to represent a

single logic signal, with each wire having 1/2 the voltage swing of normal. To first order,

this means that differential ECL is approximately twice as fast as ECL (Equation 1.2), but
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more wires are needed and more power may be required.

1.2 Technology Choice

Historically, ECL has been the choice when the highest speed was desired, it’s main

drawback being high power consumption. Although CMOS has been closing the speed

gap, at high speeds it too is a high power technology. At the present time ECL, as measured

by loaded gate delays, is somewhere between 1
2 and 1

4 the delay of similar CMOS gates.

Comparable designs in ECL also take about the same layout area as a CMOS design,

primarily because the metal interconnect limits the circuit densities. Because ECL seems to

still maintain a speed advantage, the technology used as a basis for this thesis will be ECL,

supplemented with differential ECL where possible. Most conclusions will apply primarily

to implementations using ECL, but wherever possible, the results will be generalized to

other implementation technologies, principally CMOS.

1.3 Multiplication Architectures

Chapter 2 presents partial product generation in detail, but all multiplication methods share

the same basic procedure - addition of a number of partial products. A number of different

methods can be used to add the partial products. The simple methods are easy to implement,

but the more complex methods are needed to obtain the fastest possible speed.

1.3.1 Iterative

The simplest method of adding a series of partial products is shown in Figure 1.3. It is based

upon an adder-accumulator, along with a partial product generator and a hard wired shifter.

This is relatively slow, because adding N partial products requires N clock cycles. The

easiest clocking scheme is to make use of the system clock, if the multiplier is embedded

in a larger system. The system clock is normally much slower than the maximum speed at

which the simple iterative multiplier can be clocked, so if the delay is to be minimized an

expensive and tricky clock multiplier is needed, or the hardware must be self-clocking.
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Figure 1.3: Simple iterative multiplier.

1.3.2 Linear Arrays

A faster version of the basic iterative multiplier adds more than one operand per clock cycle

by having multiple adders and partial product generators connected in series (Figure 1.4).

This is the equivalent of "unrolling" the simple iterative method. The degree to which the

loop is unrolled determines the number of partial products that can be reduced in each clock

cycle, but also increases the hardware requirements. Typically, the loop is unrolled only to

the point where the system clock matches the clocking rate of this multiplier. Alternately,

the loop can be unrolled completely, producing a completely combinatorial multiplier (a

full linear array). When contrasted with the simple iterative scheme, it will match the

system clock speed better, making the clocking much simpler. There is also less overhead

associated with clock skew and register delay per partial product reduced.

1.3.3 Parallel Addition (Trees)

When a number of partial products are to be added, the adders need not be connected in

series, but instead can be connected to maximize parallelism, as shown in Figure 1.5. This

requires no more hardware than a linear array,but does have more complex interconnections.

The time required to add N partial products is now proportional to log N, so this can be much
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Figure 1.4: Linear array multiplier. Reduces 3 partial products per clock.

Adder

Adder Adder

Adder

Adder Adder Adder

Partial Products

Product

3 adder delays

Figure 1.5: Adding 8 partial products in parallel.
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faster for larger values of N. On the down side, the extra complexity in the interconnection

of the adders may contribute to additional size and delay.

1.3.4 Wallace Trees

The performance of the above schemes are limited by the time to do a carry propagate

addition. Carry propagate adds are relatively slow, because of the long wires needed to

propagate carries from low order bits to high order bits. Probably the single most important

advance in improving the speed of multipliers, pioneered by Wallace [35], is the use of

carry save adders (CSAs also known as full adders or 3-2 counters [7]), to add three or

more numbers in a redundant and carry propagate free manner. The method is illustrated in

Figure 1.6. By applying the basic three input adder in a recursive manner, any number of

a
b
c

sumcarry

CSA

a
b
c

sumcarry

CSA

a
b
c

sumcarry

CSA

a
b
c

sumcarry

CSA

Operand 0

Operand 1

Operand 2

Output 1

Output 0

Figure 1.6: Reducing 3 operands to 2 using CSAs.

partial products can be added and reduced to 2 numbers without a carry propagate adder. A

single carry propagate addition is only needed in the final step to reduce the 2 numbers to a

single, final product. The general method can be applied to trees and linear arrays alike to

improve the performance.
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Binary Trees

The tree structure described by Wallace suffers from irregular interconnections and is

difficult to layout. A more regular tree structure is described by [24], [37], and [30], all

of which are based upon binary trees. A binary tree can be constructed by using a row of

4-2 counters 1, which accepts 4 numbers and sums them to produce 2 numbers. Although

this improves the layout problem, there are still irregularities, an example of which is

shown in Figure 1.7. This figure shows the reduction of 8 partial products in two levels of

4-2 counters to two numbers, which would then be reduced to a final product by a carry

propagate adder. The shifting of the partial products introduce zeros at various places in

the reduction. These zeros represent either hardware inefficiency, if the zeros are actually

added, or irregularities in the tree if special counters are built to explicitly exclude the zeros

from the summation. The figure shows bits that jump levels (gray dots), and more counters

in the row making up the second level of counters (12), than there are in the rows making up

the first level of counters (9). All of these effects contribute to irregularities in the layout,

although it is still more regular than a Wallace tree.

1.4 Architectural Choices

With the choice of ECL as an implementation technology, many of the architectural choices

are determined. Registers are extremely expensive, both in layout area and in power

requirements. Because of the high potential speed and minimum amount of overhead

circuitry (such as registers, clock distribution and skew),a fully parallel, tree implementation

seems to promise the highest possible speed. Implementations and comparisons will be

based upon this assumption, although smaller tree or array structures will be noted when

appropriate.

ECL allows the efficient implementation of CSAs. Two tail (gate) currents are necessary

per CSA. The most efficient implementations of 4-2 counters, or higher order blocks (such

as 5-5-4 or 7-3 counters) appear to offer no advantage in area or power consumption. For

14-2 adders, as used by Santoro[24] and Weinberger[37], are easily constructed from two CSAs, however
in some technologies a more direct method may be faster.
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Figure 1.7: Reduction of 8 partial products with 4-2 counters.
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this reason architectures based upon CSAs will be considered exclusively. To overcome the

wiring complexity of the direct usage of CSAs, an automated tool will be used to implement

multiplier trees. This tool is described in detail in later chapters, and is responsible for

placement, wiring, and optimization of multiplier tree structures.

1.5 Thesis Structure

The remaining portion of this thesis is structured as follows :

� Chapter 2 - Begins the main contribution of this thesis, by reviewing existing partial

product generation algorithms. A new class of algorithms, (Redundant Booth) which

is a variation on more conventional algorithms, is described.

� Chapter 3 - Presents the design of various carry propagate adders and multiple

generators. Carry propagate adders play a crucial role in the design of high speed

multipliers. After the partial products are reduced as far as possible in a redundant

form, a carry propagate addition is needed to produce the final product. This addition

consumes a significant fraction of the total multiply time.

� Chapter 4 - Describes a software tool that has been developed for this thesis, which

automatically produces the layout and wiring of multiplier trees of various sizes and

algorithms. The tool also performs a number of optimizations to reduce the layout

area and increase the speed.

� Chapter 5 - Combines the results of Chapters 2, 3 and 4 to compare implementations

using various partial product generation algorithms on the basis of speed, power, and

layout area. All of the multipliers perform a 53 by 53 bit unsigned multiply, which

is suitable for IEEE-754 [12] double precision multiplication. Some interesting and

unique variations on conventional algorithms are also presented. Implementations

based upon the redundant Booth algorithm are also included in the analysis. The

designs are also compared to other designs described in the literature.

� Chapter 6 - Closes the main body of this thesis by noting that the delay of all pieces of a

multiplier are important. In particular long control wire delays, multiple distribution,
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and carry propagate adder delays are at least as important in determining the overall

performance as the partial product summing delay.



Chapter 2

Generating Partial Products

Chapter 1 briefly described a number of different methods of implementing integer multi-

pliers. The methods all reduce to two basic steps – create a group of partial products, then

add them up to produce the final product. Different ways of adding the partial products were

mentioned, but little was said about how to generate the partial products to be summed.

This chapter presents a number of different methods for producing partial products. The

simplest partial product generator produces N partial products, where N is the length of the

input operands. A recoding scheme introduced by Booth [5] reduces the number of partial

products by about a factor of two. Since the amount of hardware and the delay depends on

the number of partial products to be added, this may reduce the hardware cost and improve

performance. Straightforward extensions of the Booth recoding scheme can further reduce

the number of partial products, but require a time consuming N bit carry propagate addition

before any partial product generation can take place. The final sections of this chapter will

present a new variation on Booth’s algorithm which reduces the number of partial products

by nearly a factor of three, but does not require an N bit carry propagate add for partial

product generation.

This chapter attempts to stay away from implementation details, but concentrates on the

partial product generation in a hardware independent manner. Unsigned multiplication only

will be considered here, in order that that the basic methods are not obscured with small

details. Multiplication of unsigned numbers is also important because most floating point

formats represent numbers in a sign magnitude form, completely separating the mantissa

13
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multiplication from the sign handling. The methods are all easily extended to deal with

signed numbers, an example of which is presented in Appendix A.

2.1 Background

2.1.1 Dot Diagrams

The partial product generation process is illustrated by the use of a dot diagram. Figure 2.1

shows the dot diagram for the partial products of a 16x16 bit Simple Multiplication. Each
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Figure 2.1: 16 bit simple multiplication.

dot in the diagram is a place holder for a single bit which can be a zero or one. The partial

products are represented by a horizontal row of dots, and the selection method used in

producing each partial product is shown by the table in the upper left corner. The partial

products are shifted to account for the differing arithmetic weight of the bits in the multiplier,

aligning dots of the same arithmetic weight vertically. The final product is represented by

the double length row of dots at the bottom. To further illustrate simple multiplication, an

example using real numbers is shown in Figure 2.2.
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Multiplier = 6366910 = 1111100010110101

Multiplicand (M) = 4011910 = 1001110010110111

Figure 2.2: 16 bit simple multiplication example.

Roughly speaking, the number of dots (256 for Figure 2.1) in the partial product section

of the dot diagram is proportional to the amount of hardware required (time multiplexing can

reduce the hardware requirement, at the cost of slower operation [25]) to sum the partial

products and form the final product. The latency of an implementation of a particular

algorithm is also related to the height of the partial product section (i.e the maximum

number of dots in any vertical column) of the dot diagram. This relationship can vary from

logarithmic (tree implementation where interconnect delays are insignificant) to linear

(array implementation where interconnect delays are constant) to something in between

(tree implementations where interconnect delays are significant). But independent of the

implementation, adding fewer partial products is always better.

Finally, the logic which selects the partial products can be deduced from the partial

product selection table. For the simple multiplication algorithm, the logic consists of a

single AND gate per bit as shown in Figure 2.3. This figure shows the selection logic for

a single partial product (a single row of dots). Frequently this logic can be merged directly

into whatever hardware is being used to sum the partial products. This merging can reduce

the delay of the logic elements to the point where the extra time due to the selection elements
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Multiplicand

Partial Product

Multiplier
bit

Lsb

LsbMsb

Msb

Figure 2.3: Partial product selection logic for simple multiplication.

can be ignored. However, in a real implementation there will still be interconnect delay

due to the physical separation of the common inputs of each AND gate, and distribution of

the multiplicand to the selection elements.

2.1.2 Booth’s Algorithm

A generator that creates a smaller number of partial products will allow the partial product

summation to be faster and use less hardware. The simple multiplication generator can be

extended to reduce the number of partial products by grouping the bits of the multiplier

into pairs, and selecting the partial products from the set f0,M,2M,3Mg, where M is the

multiplicand. This reduces the number of partial products by half, but requires a carry

propagate add to produce the 3M multiple, before any partial products can be generated.

Instead, a method known as Modified Booth’s Algorithm [5] [17] reduces the number of

partial products by about a factor of two, without requiring a preadd to produce the partial

products. The general idea is to do a little more work when decoding the multiplier, such

that the multiples required come from the set f0,M,2M,4M + -Mg. All of the multiples

from this set can be produced using simple shifting and complementing. The scheme works

by changing any use of the 3M multiple into 4M - M. Depending on the adjacent multiplier

groups, either 4M is pushed into the next most significant group (becoming M because of the

different arithmetic weight of the group), or -M is pushed into the next least significant group

(becoming -4M). Figure 2.4 shows the dot diagram for a 16 x 16 multiply using the 2 bit

version of this algorithm (Booth 2). The multiplier is partitioned into overlapping groups of

3 bits, and each group is decoded to select a single partial product as per the selection table.

Each partial product is shifted 2 bit positions with respect to it’s neighbors. The number of
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Figure 2.4: 16 bit Booth 2 multiply.

partial products has been reduced from 16 to 9. In general the there will be
j

n+2
2

k
partial

products, where n is the operand length. The various required multiples can be obtained

by a simple shift of the multiplicand (these are referred to as easy multiples). Negative

multiples, in two’s complement form, can be obtained using a bit by bit complement of the

corresponding positive multiple, with a 1 added in at the least significant position of the

partial product (the S bits along the right side of the partial products). An example multiply

is shown in Figure 2.5. In this case Booth’s algorithm has reduced the total number of

dots from 256 to 177 (this includes sign extension and constants – see Appendix A for

a discussion of sign extension). This reduction in dot count is not a complete saving –

the partial product selection logic is more complex (Figure 2.6). Depending on actual

implementation details, the extra cost and delay due to the more complex partial product

selection logic may overwhelm the savings due to the reduction in the number of dots [24]

(more on this in Chapter 5).
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Figure 2.5: 16 bit Booth 2 example.

2.1.3 Booth 3

Actually, Booth’s algorithm can produce shift amounts between adjacent partial products of

greater than 2 [17], with a corresponding reduction in the height and number of dots in the

dot diagram. A 3 bit Booth (Booth 3) dot diagram is shown in Figure 2.7, and an example

is shown in Figure 2.8. Each partial product could be from the set f�0, �M, �2M, �3M,

�4M g. All multiples with the exception of 3M are easily obtained by simple shifting and

complementing of the multiplicand. The number of dots, constants, and sign bits to be

added is now 126 (for the 16 x 16 example) and the height of the partial product section is

now 6.

Generation of the multiple 3M (referred to as a hard multiple, since it cannot be obtained

via simple shifting and complementing of the multiplicand) generally requires some kind

of carry propagate adder to produce. This carry propagate adder may increase the latency,

mainly due to the long wires that are required for propagating carries from the less significant

to more significant bits. Sometimes the generation of this multiple can be overlapped with

an operation which sets up the multiply (for example the fetching of the multiplier).

Another drawback to this algorithm is the complexity of the partial product selection
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logic, an example of which is shown in Figure 2.9, along with the extra wiring needed for

routing the 3M multiple.

2.1.4 Booth 4 and Higher

A further reduction in the number and height in the dot diagram can be made, but the

number of hard multiples required goes up exponentially with the amount of reduction. For

example the Booth 4 algorithm (Figure 2.10) requires the generation of the multiples f�0,

�M, �2M, �3M, �4M,�5M,�6M,�7M,�8Mg. The hard multiples are 3M (6M can be

obtained by shifting 3M), 5M and 7M. The formation of the multiples can take place in

parallel, so the extra cost mainly involves the adders for producing the multiples, larger

partial product selection multiplexers, and the additional wires that are needed to route the

various multiples around.
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Figure 2.9: 16 bit Booth 3 partial product selector logic.

Partial Product Selection Table
Multiplier Bits Selection

00000

00001

+ 0

 + Multiplicand

00010

00011

00100

00101

00110

00111

+ Multiplicand

+2 x Multiplicand

+2 x Multiplicand

+3 x Multiplicand

+3 x Multiplicand

+4 x Multiplicand

Multiplier Bits Selection

01000

01001

+4 x Multiplicand

01010

01011

01100

01101

01110

01111

+5 x Multiplicand

+6 x Multiplicand

+6 x Multiplicand

+7 x Multiplicand

+7 x Multiplicand

+8 x Multiplicand

+5 x Multiplicand

Multiplier Bits Selection

10000
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-8 x Multiplicand

-7 x Multiplicand

10010

10011
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10110

10111

-7 x Multiplicand

-6 x Multiplicand

-6 x Multiplicand

-5 x Multiplicand

-5 x Multiplicand

-4 x Multiplicand

Multiplier Bits Selection

11000

11001

-4 x Multiplicand

11010

11011

11100

11101

11110

11111

-3 x Multiplicand

-2 x Multiplicand

-2 x Multiplicand

- Multiplicand

- Multiplicand

- 0

-3 x Multiplicand

Figure 2.10: Booth 4 partial product selection table.
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2.2 Redundant Booth

This section presents a new variation on the Booth 3 algorithm, which eliminates much

of the delay and part of the hardware associated with the hard multiple generation, yet

produces a dot diagram which can be made to approach that of the conventional Booth 3

algorithm. To motivate this variation a similar, but slightly simpler is explained. Improving

the hardware efficiency of this method produces the new variation. Methods of further

generalizing to a Booth 4 algorithm are then discussed.

2.2.1 Booth 3 with Fully Redundant Partial Products

The time consuming carry propagate addition that is required to generate the "hard multi-

ples" for the higher Booth algorithms can be eliminated by representing the partial products

in a fully redundant form. This method is illustrated by examining the Booth 3 algorithm,

since it requires the fewest multiples. A fully redundant form represents an n bit number

by two n� 1 bit numbers whose sum equals the number it is desired to represent (there are

other possible redundant forms. See [30]). For example the decimal number 14568 can be

represented in redundant form as the pair (14568,0), or (14567,1), etc. Using this repre-

sentation, it is trivial to generate the 3M multiple required by the Booth 3 algorithm, since

3M = 2M + 1M, and 2M and 1M are easy multiples. The dot diagram for a 16 bit Booth

3 multiply using this redundant form for the partial products is shown in Figure 2.11 (an

example appears in Figure 2.12). The dot diagram is the same as that of the conventional

Booth 3 dot diagram, but each of the partial products is twice as high, giving roughly twice

the number of dots and twice the height. Negative multiples (in 2’s complement form) are

obtained by the same method as the previous Booth algorithms – bit by bit complementation

of the corresponding positive multiple with a 1 added at the lsb. Since every partial product

now consists of two numbers, two 1s are added at the lsb to complete the 2’s complement

negation. These two 1s can be preadded into a single 1 which is shifted to the left one

position.

Although this algorithm is not particularly attractive, due to the doubling of the number

of dots in each partial product, it suggests that a partially redundant representation of the

partial products might lead to a more efficient variant.
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Figure 2.11: 16 x 16 Booth 3 multiply with fully redundant partial products.
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Figure 2.12: 16 bit fully redundant Booth 3 example.
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2.2.2 Booth 3 with Partially Redundant Partial Products

The conventional Booth 3 algorithm assumes that the 3M multiple is available in non-

redundant form. Before the partial products can be summed, a time consuming carry

propagate addition is needed to produce this multiple. The Booth 3 algorithm with fully

redundant partial products avoids the carry propagate addition, but has the equivalent of

twice the number of partial products to sum. The new scheme tries to combine the smaller

dot diagram of the conventional Booth 3 algorithm, with the ease of the hard multiple

generation of the fully redundant Booth 3 algorithm.

The idea is to form the 3M multiple in a partially redundant form by using a series

of small length adders, with no carry propagation between the adders (Figure 2.13). If

the adders are of sufficient length, the number of dots per partial product can approach

the number in the non-redundant representation. This reduces the number of dots needing

summation. If the adders are small enough, carries will not be propagated across large

distances, and the small adders will be faster than a full carry propagate adder. Also, less

hardware is required due to the elimination of the logic which propagates carries between

the small adders.

A difficulty with the partially redundant representation shown in Figure 2.13 is that neg-

ative partial products do not preserve the proper redundant form. To illustrate the problem,

the top of Figure 2.14 shows a number in the proposed redundant form. The negative (two’s

complement) can be formed by treating the redundant number as two separate numbers and

forming the negative of each in the conventional manner by complementing and adding a

1 at the least significant bit. If this procedure is done, then the large gaps of zeros in the

positive multiple become large gaps of ones in the negative multiple (the bottom of Figure

2.14). In the worst case (all partial products negative), summing the partially redundant

partial products requires as much hardware as representing them in the fully redundant

form. It would have been better to just stick with the fully redundant form in the first place,

rather than require small adders to make the partially redundant form. The problem then is

to find a partially redundant representation which has the same form for both positive and

negative multiples, and allows easy generation of the negative multiple from the positive

multiple (or vice versa). The simple form used in Figure 2.13 cannot meet both of these



CHAPTER 2. GENERATING PARTIAL PRODUCTS 25

�����������������
����������������� 2M

M

4 4

4 bit adder

4

∑Carry

4 4

4 bit adder

4

∑Carry

4 4

4 bit adder

4

∑Carry

4 4

4 bit adder

4

∑Carry

1

3M

�����������������
�����������������

C

0

0

Fully redundant form

Partially redundant form

C C C

Figure 2.13: Computing 3M in a partially redundant form.
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Figure 2.14: Negating a number in partially redundant form.
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conditions simultaneously.

2.2.3 Booth with Bias

In order to produce multiples in the proper form, Booth’s algorithm needs to be modified

slightly. This modification is shown in Figure 2.15. Each partial product has a bias constant
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Partial Product Selection Table
Multiplier Bits Selection

0000

0001

K+ 0

 K+ Multiplicand

0010

0011

0100

0101

0110

0111

K+ Multiplicand

K+2 x Multiplicand

K+2 x Multiplicand

K+3 x Multiplicand

K+3 x Multiplicand

K+4 x Multiplicand

Multiplier Bits Selection

1000

1001

K-4 x Multiplicand

1010

1011

1100

1101

1110

1111

K-3 x Multiplicand

K-2 x Multiplicand

K-2 x Multiplicand

K- Multiplicand

K- Multiplicand

K- 0

K-3 x Multiplicand

Figure 2.15: Booth 3 with bias.

added to it before being summed to form the final product. The bias constant (K) is the same

for both positive and negative multiples1 of a single partial product, but different partial

products can have different bias constants. The only restriction is that K, for a given partial

product, cannot depend on the particular multiple selected for use in producing the partial

product. With this assumption, the constants for each partial product can be added (at

design time!) and the negative of this sum added to the partial products (the Compensation

constant). The net result is that zero has been added to the partial products, so the final

product is unchanged.

1the entries from the right side of the table in Figure 2.15 will continue to be considered as negative
multiples
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The value of the bias constant K is chosen in such a manner that the creation of negative

partial products is a simple operation, as it is for the conventional Booth algorithms. To find

an appropriate value for this constant, consider a multiple in the partially redundant form of

Figure 2.13 and choose a value for K such that there is a 1 in the positions where a "C" dot

appears and zero elsewhere, as shown in the top part of Figure 2.16. The topmost circled

�����������������
�����������������C

C C C
11 1

1+

= OR = EXOR

�����������������
�����������������C

K

Multiple

Combine these 
bits by summing

K + Multiple

C

Y
Y

Y Y Y

X
X

X X X

C C

0 0 00 0 00 0 00 0 0 0 0 0

Figure 2.16: Transforming the simple redundant form.

section enclosing 3 vertical items (two dots and the constant 1) can be summed as per the

middle part of the figure, producing the dots "X" and "Y". The three items so summed can

be replaced by the equivalent two dots, shown in the bottom part of the figure, to produce

a redundant form for the sum of K and the multiple. This is very similar to the simple
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redundant form described earlier, in that there are large gaps of zeros in the multiple. The

key advantage of this form is that the value for K �Multiple can be obtained very simply

from the value of K + Multiple.

Figure 2.17 shows the sum of K + Multiple with a value Z which is formed by the bit

by bit complement of the non-zero portions of K + Multiple and the constant 1 in the lsb.

When these two values are summed together, the result is 2K (this assumes proper sign

������������������
������������������
������������������

X

Y Y Y
XX K + Multiple

+

������������������
������������������C

C

X

Y
X

Y
X

Y
Z

(the bit by bit complement of 
the non-blank components of 
K+Multiple, with a 1 added in 

at the lsb)

1 1 1

1

2K

Figure 2.17: Summing K�Multiple and Z.

extension to however many bits are desired). That is :

K + Multiple + Z = 2K

Z = K�Multiple

In short, K � Multiple can be obtained from K + Multiple by complementing all of the

non-blank bits of K + Multiple and adding 1. This is exactly the same procedure used to

obtain the negative of a number when it is represented in its non-redundant form.

The process behind the determination of the proper value for K can be understood by

deducing the same result in a slightly different method. First, assume that a partial product,

PP, is to be represented in a partially redundant form using the numbers X and Y, with Y

having mostly zeroes in it’s binary representation. Let PP be equal to the sum of the three

numbers A,B, and the bias constant K. That is :

PP = A + B + K
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The partially redundant form can be written in binary format as :

PP = A + B + K

= X + Y

=

8<
:

Xn�1 Xn�2 : : : Xk : : : Xi : : : X1 X0 +

0 0 : : : Yk0 : : : Yi0 : : : 0 0

The desired behaviour is to be able to "negate" the partial product P, by complementing all

the bits of X and the non-zero components of Y, and then adding 1. It is not really negation,

because the bias constant K, must be the same in both the positive and "negative" forms.

That is :

"negative" of PP = �(A + B) + K (2.1)

=

8<
:

Xn�1 Xn�2 � � � Xk � � � Xi � � � X1 X0 +1+

0 0 � � � Yk0 � � � Yi0 � � � 0 0

Now if PP is actually negated in 2’s complement form it gives :

�PP = �(A + B + K) (2.2)

=

8<
:

Xn�1 Xn�2 � � � Xk � � � Xi � � � X1 X0 +1+

1 1 � � � Yk1 � � � Yi1 � � � 1 1 +1

So all the long strings of 0’s in Y have become long strings of 1’s, as mentioned previously.

The undesirable strings of 1’s can be pulled out and assembled into a separate constant, and

the "negative" of PP can be substituted :

�PP =

8>>><
>>>:

Xn�1 Xn�2 � � � Xk � � � Xi � � � X1 X0 +1+

0 0 � � � Yk0 � � � Yi0 � � � 0 0 +

1 1 � � � 01 � � � 01 � � � 1 1 +1

=

8<
:

"negative" of PP +

1 1 � � � 01 � � � 01 � � � 1 1 +1

Finally, substituting Equations 2.2 and 2.1 and simplifying :

�(A + B + K) = �(A + B) + K +
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1 1 � � � 01 � � � 01 � � � 1 1 +1

�2K = 1 1 � � � 01 � � � 01 � � � 1 1 +1

2K = 0 0 � � � 10 � � � 10 � � � 0 0

which again gives the same value for K. The partially redundant form described above

satisfies the two conditions presented earlier, that is it has the same representation for both

positive and negative multiples, and also it is easy to generate the negative given the positive

form.

Producing the multiples

Figure 2.18 shows in detail how the biased multiple K + 3M is produced from M and 2M

using 4 bit adders and some simple logic gates. The simple logic gates will not increase

������������������
������������������ 2M

M
3M

�����������������
�����������������C

Y

1

4 4

4 bit adderCarry

4 4

4 bit adderCarry

4 4

4 bit adderCarry

4 4

4 bit adderCarry

YY

X X X K + 3M, where
K = 000010001000100000

0

0

Figure 2.18: Producing K + 3M in partially redundant form.

the time needed to produce the biased multiple if the carry-out and the least significant bit
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from the small adder are available early. This is usually easy to assure. The other required

biased multiples are produced by simple shifting and inverting of the multiplicand as shown

in Figure 2.19. In this figure the bits of the multiplicand (M) are numbered (lsb = 0) so that

K

M�����������������0126 34578913 1011121415

01 0 0 0 000010000 1000

01 0 0 0 000010000 1000

0 00

�����������������
�����������������0 0126 34578913 1011121415

5913

0

00

�����������������
�����������������
�����������������

00126 34578913 1011121415 0
11 7 3

K+0

K+M

K+2M

K+4M

�����������������
�����������������0126 34578913 1011121415

4812

Figure 2.19: Producing other multiples.

the source of each bit in each multiple can be easily seen.

2.2.4 Redundant Booth 3

Combining the partially redundant representation for the multiples with the biased Booth

3 algorithm provides a workable redundant Booth 3 algorithm. The dot diagram for the

complete redundant Booth 3 algorithm is shown in Figure 2.20 for a 16 x 16 multiply. The

compensation constant has been computed given the size of the adders used to compute the

K + 3M multiple (4 bits in this case). There are places where more than a single constant

is to be added (on the left hand diagonal). These constants could be merged into a single

constant to save hardware. Ignoring this merging, the number of dots, constants and sign

bits in the dot diagram is 155, which is slightly more than that for the non-redundant Booth
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Figure 2.20: 16 x 16 redundant Booth 3.

3 algorithm (previously given as 126). The height 2 is 7, which is one more than that for

the Booth 3 algorithm. Each of these measures are less than that for the Booth 2 algorithm

(although the cost of the small adders is not reflected in this count).

A detailed example for the redundant Booth 3 algorithm is shown in Figure 2.21. This

example uses 4 bit adders as per Figure 2.18 to produce the multiple K + 3M. All of the

multiples are shown in detail at the top of the figure.

The partial product selectors can be built out of a single multiplexer block, as shown in

Figure 2.22. This figure shows how a single partial product is built out of the multiplicand

and K + 3M generated by logic in Figure 2.18.

2.2.5 Redundant Booth 4

At this point, a possible question is "Can this scheme be adapted to the Booth 4 algorithm".

The answer is yes, but it is not particularly efficient and probably is not viable. The difficulty

is outlined in Figure 2.23 and is concerned with the biased multiples 3M and 6M. The left

side of the figure shows the format of K+3M. The problem arises when the biased multiple

2The diagram indicates a single column (20) with height 8, but this can be reduced to 7 by manipulation
of the S bits and the compensation constant.
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Figure 2.21: 16 bit partially redundant Booth 3 multiply.
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CHAPTER 2. GENERATING PARTIAL PRODUCTS 36

�����������������
�����������������C

C C C

11 1

�����������������
�����������������C

Y

XXX

YY

K

3M

K + 3M0

�����������������
�����������������C

YYY

X X X
2K + 6M ≠ K + 6M

0

0

Left Shift

Figure 2.23: Producing K + 6M from K + 3M ?



CHAPTER 2. GENERATING PARTIAL PRODUCTS 37

K + 6M is required. The normal (unbiased) Booth algorithms obtain 6M by a single left

shift of 3M. If this is tried using the partially redundant biased representation, then the

result is not K+ 6M, but 2K+ 6M. This violates one of the original premises, that the bias

constant for each partial product is independent of the multiple being selected. In addition

to this problem, the actual positions of the Y bits has shifted.

These problems can be overcome by choosing a different bias constant, as illustrated in

Figure 2.24. The bias constant is selected to be non-zero only in bit positions corresponding

to carries after shifting to create the 6M multiple. The three bits in the area of the non-zero

part of K (circled in the figure) can be summed, but the summation is not the same for 3M

(left side of the figure) as for 6M (right side of the figure). Extra signals must be routed

to the Booth multiplexers, to simplify them as much as possible (there may be many of

them if the multiply is fairly large). For example, to fully form the 3 dots labeled "X", "Y",

and "Z" requires the routing of 5 signal wires. Creative use of hardware dependent circuit

design (for example creating OR gates at the inputs of the multiplexers) can reduce this to

4, but this still means that there are more routing wires for a multiple than there are dots in

the multiple. Of course since there are now 3 multiples that must be routed (3M, 5M, and

7M), these few extra wires may not be significant.

There are many other problems, which are inherited from the non-redundant Booth 4

algorithm. Larger multiplexers – each multiplexer must choose from 8 possibilities, twice

as many as for the Booth 3 algorithm – are required. There is also a smaller hardware

reduction in going from Booth 3 to Booth 4 then there was in going from Booth 2 to Booth

3. Optimizations are also possible for generation of the 3M multiple. These optimizations

are not possible for the 5M and 7M multiples, so the small adders that generate these

multiples must be of a smaller length (for a given delay). This means more dots in the

partial product section to be summed.

Thus a redundant Booth 4 algorithm is possible to construct, but Chapter 5 will show

that the non-redundant Booth 4 algorithm offers no performance, area, or power advantages

over the Booth 3 algorithm for reasonable (� 64 bits) length algorithms. As a result

the redundant Booth 4 algorithm is not very interesting. The hardware savings due to

the reduced number of partial products is exceeded by the cost of the adders needed to

produce the three hard multiples, the extra wires (long) needed to distribute the multiples
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to the partial product multiplexers, and the increased complexity of the partial product

multiplexers themselves.

2.2.6 Choosing the Adder Length

By and large, the rule for choosing the length of the small adders necessary for is straight-

forward - use largest possible adder that does not increase the latency of multiply. This

will minimize the amount of hardware needed for summing the partial products. Since

the multiple generation occurs in parallel with the Booth decoding, there is little point in

reducing the adder lengths to the point where they are faster than the Booth decoder. The

exact length is dependent on the actual technology used in the implementation, and must

be determined empirically.

Certain lengths should be avoided, as illustrated in Figure 2.25. This figure assumes
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Figure 2.25: Redundant Booth 3 with 6 bit adders.

a redundant Booth 3 algorithm, with a carry interval of 6 bits. Note the accumulation of

dots at certain positions in the dot diagram. In particular, the column forming bit 15 of the

product is now 8 high (vs 7 for a 4 bit carry interval). This accumulation can be avoided by

choosing adder lengths which are relatively prime to the shift amount between neighboring

partial products (in this case, 3). This spreads the Y bits out so that accumulation won’t

occur in any particular column.
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2.3 Summary

This chapter has described a new variation on conventional Booth multiplication algo-

rithms. By representing partial products in a partially redundant form, hard multiples can

be computed without a slow, full length carry propagate addition. With such hard multiples

available, a reduction in the amount of hardware needed for summing partial products is

then possible using the Booth 3 multiplication method. Since Booth’s algorithm requires

negative partial products, the key idea in using the partially redundant representation is to

add a carefully chosen constant to each partial product, which allows the partial product to

be easily negated. A detailed evaluation of implementations using this algorithm is pre-

sented in Chapter 5, including comparisons with implementations using more conventional

algorithms.



Chapter 3

Adders for Multiplication

Fast carry propagate adders are important to high performance multiplier design in two

ways. First, an efficient and fast adder is needed to make any "hard" multiples that

are needed in partial product generation. Second, after the partial products have been

summed in a redundant form, a carry propagate adder is needed to produce the final non-

redundant product. Chapter 5 will show that the delay of this final carry propagate sum

is a substantial portion of the total delay through the multiplier, so minimizing the adder

delay can make a significant contribution to improving the performance of the multiplier.

This chapter presents the design of several high performance adders, both general purpose

and specialized. These adders will then be used in Chapter 5 to evaluate overall multiplier

designs.

3.1 Definitions and Terminology

The operands to be added are n bit binary numbers, A and B, with resultant binary sum

S (also n bits long). The single bit carry-in to the summation will be denoted by c0 and

the carry-out by cn. A,B, and S can be expanded directly in binary representation. For

example, the binary representation representation for A is :

A =

n�1X
k=0

ak � 2k ak 2 (0; 1)

with similar expansions for B, and S.

41
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The following notation for various boolean operators will be used :

a b 7! boolean AND of a,b

a + b 7! boolean OR of a,b

a� b 7! EXCLUSIVE OR of a,b

a 7! boolean NOT of a

A 7!

n�1X
k=0

ak � 2k the bit by bit complement of the binary number A

To avoid ambiguity, the symbol
sum
+ will be used to signify actual addition of binary numbers.

The defining equations for the binary addition of A, B, and c0, giving sum S and cn will

be taken as :

sk = ak � bk � ck (3.1)

ck+1 = ak bk + ak ck + bk ck (3.2)

k = 0; 1; : : : ; n� 1

In developing the algebra of adders, the auxiliary functions p (carry propagate) and g

(carry generate) will be needed, and are defined by a modified version of equation 3.2:

ck+1 = gk + pk ck (3.3)

Combining equations 3.3 and 3.2 gives the definition of g and two possible definitions for p

gk = ak bk (3.4)

pk = ak + bk (3.5)

= ak � bk (3.6)

In general, the two definitions of pk are interchangeable. Where it is necessary to distinguish

between the two possible p definitions (most importantly in the Ling adder), the first form

is referred to as p+k and the second form as p�k.
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Equation 3.3 gives the carry out from a given bit position in terms of the carry-in to

that position. This equation can also be applied recursively to give ck+1 in terms of a lower

order carry. For example, applying (3.3) three times gives ck+1 in terms of ck�2 :

ck+1 = gk + pk gk�1 + pk pk�1 gk�2 + pk pk�1 pk�2 ck�2 (3.7)

This leads to two additional functions which can be defined :

gj
k = gj + pj gj�1 + pj pj�1 gj�2 + � � �+ pj pj�1 � � � pk+1gk (3.8)

pj
k = pj pj�1 pj�2 � � � pk+1 pk (3.9)

Equations 3.8 and 3.9 give the carry generate and propagate for the range of bits from k to

j. These equations form the basis for the conventional carry lookahead adder [38].

3.1.1 Positive and Negative Logic

Before presenting the design examples, a simple theorem relating positive logic adders

(where a "1" is represented by a high voltage) and negative logic adders (a "1" is represented

by a low voltage) will be stated. The proof for this theorem is presented in Appendix C.

This theorem is important because it allows transformation of inputs or outputs to better fit

the inverting nature of implementations of most conventional logic, and to avoid the use

of inefficient logic functions. For example, ECL can provide efficient and fast NOR/OR

gates, but NAND/AND gates are slower, larger and consume more power. Replacement of

NAND/AND gates with NOR/OR gates will produce better ECL implementations.

Theorem 1 Let A and B be positive logic binary numbers, each n bits long, and c0 be a

single carry bit. Let S be the n bit sum of A, B, and c0, and let cn be the carry out from the

summation. That is :

2n
� cn

sum
+ S = A

sum
+ B

sum
+ c0

Then :

2n
� cn

sum
+ S = A

sum
+ B

sum
+ c0

Theorem 1 is simply stating that a positive adder is also a negative logic adder. Or in other

words, an adder designed to function with positive logic inputs and outputs will also be an

adder if the inputs and outputs are negative logic.
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3.2 Design Example - 64 bit CLA adder

The first design example to be presented is that of a conventional 64 bit carry lookahead adder

(CLA) [38]. Figure 3.1 shows an overall block diagram of the adder. The input operands, A

and B, and the sum output, S, are assumed to be negative logic, while the carry-in and carry-

out are assumed to be positive logic. The 64 bit A and B input operands are partitioned into

16 four bit groups. Each group has Group Generate and Propagate Logic which computes

a group carry generate (G) and a group carry propagate (P). The Carry Lookahead Logic

in the center of the figure combines the G and P signals from each group with the carry-in

signal to produce 16 group carries (ck; k = 0; 4; : : : ; 60) and the adder carry-out (c64). Each

four bit group has an Output Stage which uses the corresponding group carries to produce

a 4 bit section of the final 64 bit sum.

3.2.1 Group Logic

The group generate logic, group propagate logic, and the final output stage for each 4

bit section can be combined into a single modular logic section. A possible gate level

implementation for a four bit group is shown in Figure 3.2. Complex or multiple gates

contained within dotted boxes represent logic which can be implemented with a single ECL

tail current. The individual bit gk and pk, (k=0,1,2,3), are produced by the gates labeled Y,

and are used to produce the group generate (G) and group propagate (P) signals, as well as

being used internally to produce bit to bit carries. G and P for the group are produced by

the gates labeled X, according to the following equations :

G = g3
0 (3.10)

= g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0 (3.11)

P = p3
0

= p3 p2 p1 p0 (3.12)

The outputs of individual gates are connected via a wire-OR to produce G. The output

stage is formed by gates Z and produces the sum at each bit position by a three way

EXCLUSIVE OR of ak and bk with the carry (ck) reaching a particular bit. The carry
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Group
Generate

Group
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Group
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of 4 bits.  .  .

A Operand (64 bits long) LSBMSB

Carry-InCarry-Out Carry Lookahead Logic

.  .  .

Group Generate and
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G P

a b

4 4
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G P

a b
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15 15
G P

1 1
G P

0 0

C0C1C15

C16

4 4 4

Sum of A and B (64 bits long) LSBMSB

Carry-In
Output Stages
(4 bits wide)

sum

Carry-In

sum

Output Stages
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sum

Output Stages
(4 bits wide)

G P

Figure 3.1: Carry lookahead addition overview.
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PG s0

g0
2

s1s2s3

cin

g p g p g p g p

p0
2 p0

1
g0

1

p0

g0

a3 b2 a1 b1 a0 b0a2b3

X X X X X W W W W W W W W W

YYYY

Z Z Z

Z

c0c1c2c3

Figure 3.2: 4 bit CLA group.

reaching a particular bit can be related to the group carry-in (cin) by the following :

ck = gk
0 + pk

0 cin

The signal cin usually arrives later than the other signals, (since it comes from the global

carry lookahead logic which contains long wires), so the logic needs to be optimized to

minimize the delay along the cin path. This is done by using Shannon’s Expansion Theorem

[27] [28] applied to sk as a function of cin :

sk = ak � bk � ck
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= ak � bk �

�
gk

0 + pk
0 cin

�

= cin

�
ak � bk �

h
gk

0 + pk
0

i�
+ cin

�
ak � bk �

h
gk

0

i�
(3.13)

Being primary inputs, ak and bk are available very early, so the value ak�bk = ak � bk = pk

is also available fairly early. The values gk
0 and pk

0 can be produced using only locally

available signals (that is signals available within the group). Because the wires within a

group should be fairly short, these signals should also be available rather quickly (the gates

labeled W in Figure 3.2 produce these signals). The detailed circuitry for an output stage

gate which realizes equation 3.13, given ak � bk (the half sum) with a single tail current is

shown in Figure 3.3. This gate is optimized in such a way that the carry to output delay is

Vee

Vcc

Carry

G

P

Half-Sum

Sum

Sum

Vbb3

Vbb2

Vbb1

Sum
G

P
Carry

Half-Sum

Figure 3.3: Output stage circuit. For proper operation, G and P must not both be high.

much smaller than the delay from the other inputs of the gate.
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3.2.2 Carry Lookahead Logic

The carry lookahead logic which produces the individual group carries is illustrated in

Figure 3.4. The carries are produced in two stages. Since the group G and P signals are

positive logic coming from the groups, the first stage is set up in a product of sums manner

(i.e. the first stage is OR-AND-INVERT logic, which can be efficiently implemented in

ECL using NOR gates and wire-OR). The first stage of the carry lookahead logic produces

supergroup G and P for 1 to 4 groups according to the following :

G0
0 = G0

P0
0 = P0

G1
0 = (P1 + G1) (G1 + G0)

P1
0 = P1 + P0

G2
0 = (P2 + G2) (G2 + P1 + G1) (G2 + G1 + G0)

P2
0 = P2 + P1 + P0

G3
0 = (P3 + G3) (G3 + P2 + G2) (G3 + G2 + P1 + G1) (G3 + G2 + G1 + G0)

P3
0 = P3 + P2 + P1 + P0

A gate level implementation of the supergroup G and P using NOR gates and wire-OR is

shown in Figure 3.5. Note that some gates have multiple outputs. These can usually be

obtained by adding multiple emitter followers at the outputs, or by duplicating the gates

in question. The second stage of the carry lookahead logic uses the supergroup G and P

produced in the first stage, along with the carry-in, to make the final group carries, which

are then distributed to the individual group output stages. This process is similar to the

canonic addition described in [36]. The equations relating the super group G and P signals

to the final carries are :

c0 = C



C
H

A
PT

E
R

3.
A

D
D

E
R

S
FO

R
M

U
LT

IPL
IC

A
T

IO
N

49

G P
G P14 14

G P
G P13 13

G P
G P12 12

G P
G P15 15

G P1 1G P2 2G P3 3 G P0 0

G P0

00

0G P0

11

0G P0

22

0G P0

33

0

4 Group Lookahead

G P12

1212

12G P12

1313

12G P12

1414

12G P12

1515

12

G P
G P10 10

G P
G P9 9

G P
G P8 8

G P
G P11 11

G P1 1G P2 2G P3 3 G P0 0

G P0

00

0G P0

11

0G P0

22

0G P0

33

0

4 Group Lookahead

G P8

88

8G P8

99

8G P8

1010

8G P8

1111

8

G P
G P6 6

G P
G P5 5

G P
G P4 4

G P
G P7 7

G P1 1G P2 2G P3 3 G P0 0

G P0

00

0G P0

11

0G P0

22

0G P0

33

0

4 Group Lookahead

G P4

44

4G P4

55

4G P4

66

4G P4

77

4

G P
G P2 2

G P
G P1 1

G P
G P0 0

G P
G P3 3

G P1 1G P2 2G P3 3 G P0 0

G P0

00

0G P0

11

0G P0

22

0G P0

33

0

4 Group Lookahead

P
0

0

cin

+ C

G0

G P0

11

0G P0

22

0G P0

33

0 G0

0

P0

C
Carry1
Circuit

Cy

G P

C
Carry1
Circuit

Cy

G P

C
Carry1
Circuit

Cy

G P

C
Carry1
Circuit

Cy

G P

Carry2
Circuit
Cy

G0

P0

G P

Carry2
Circuit
Cy

G0

P0

G P

Carry2
Circuit
Cy

G0

P0

G P

Carry2
Circuit
Cy

G0

P0

G P

Carry3
Circuit
Cy

G0

P0

G1

P1

G P

Carry3
Circuit
Cy

G0

P0

G1

P1

G P

Carry3
Circuit
Cy

G0

P0

G1

P1

G P

Carry3
Circuit
Cy

G0

P0

G1

P1

G P

Carry4
Circuit
Cy

G0

P0

G1

P1

G2

P2

G P

Carry4
Circuit
Cy

G0

P0

G1

P1

G2

P2

G P

Carry4
Circuit
Cy

G0

P0

G1

P1

G2

P2

G P

Carry4
Circuit
Cy

G0

P0

G1

P1

G2

P2

c64 c60 c56 c52 c48 c44 C40 c36 c32 C28 c24 c20 c16 c12 c8 c4 c0

Four Bit Slices (16)

Carries to Slices (16)Carry-Out

Carry In

Figure 3.4: Detailed carry connections for 64 bit CLA.
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Figure 3.5: Supergroup G and P logic - first stage.
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4 G3
0 + P6

4 P3
0 C

c32 = G7
4 + P7

4 G3
0 + P7

4 P3
0 C

c36 = G8
8 + P8

8 G7
4 + P8

8 P7
4 G3

0 + P8
8 P7

4 P3
0 C

c40 = G9
8 + P9

8 G7
4 + P9

8 P7
4 G3

0 + P9
8 P7

4 P3
0 C

c44 = G10
8 + P10

8 G7
4 + P10

8 P7
4 G3

0 + P10
8 P7

4 P3
0 C

c48 = G11
8 + P11

8 G7
4 + P11

8 P7
4 G3

0 + P11
8 P7

4 P3
0 C

c52 = G12
12 + P12

12 G11
8 + P12

12 P11
8 G7

4 + P12
12 P11

8 P7
4 G3

0 + P12
12 P11

8 P7
4 P3

0 C



CHAPTER 3. ADDERS FOR MULTIPLICATION 51

c56 = G13
12 + P13

12 G11
8 + P13

12 P11
8 G7

4 + P13
12 P11

8 P7
4 G3

0 + P13
12 P11

8 P7
4 P3

0 C

c60 = G14
12 + P14

12 G11
8 + P14

12 P11
8 G7

4 + P14
12 P11

8 P7
4 G3

0 + P14
12 P11

8 P7
4 P3

0 C

c64 = G15
12 + P15

12 G11
8 + P15

12 P11
8 G7

4 + P15
12 P11

8 P7
4 G3

0 + P15
12 P11

8 P7
4 P3

0 C

All of the above functions can be implemented by 4 different INVERT-AND-OR blocks,

which are shown in Figure 3.6. Because C is connected with a wire-OR to P3
0, the maximum

number of inputs on any gate is 4, and the maximum number of wire-OR outputs is 5.

3.2.3 Remarks on CLA Example

The 64 bit CLA design presented above combines elements of conventional carry lookahead

adders, canonic adders, and conditional sum adders [29]. In addition circuit configurations

are chosen to specifically fit circuit tricks that are available with ECL. The result is a

reasonably modular, high performance adder. Along the critical path, there are 4 NOR

and 1 EXCLUSIVE-OR equivalent stages of gates. The next design example will further

increase the performance by reducing the number of logic stages along the critical path,

while retaining the same basic modular structure.

3.3 Design Example - 64 Bit Modified Ling Adder

A faster adder can be designed by using a method developed by H. Ling [16]. In the Ling

scheme, the group carry generate and propagate (G and P) are replaced by similar functions

(called H and I respectively) which can be produced in fewer stages than the group G and

P. These signals are distributed around in a manner which is almost identical to that of the

group G and P. When a real G or P is needed, it is recreated using H and I plus a single

signal which is locally available. The algebra behind this substitution will be presented as

needed in the discussion that follows.

An overview of a 64 bit modified Ling adder is shown in Figure 3.7. The structure

is very similar to that of the CLA described above, but there are two additional signals

which connect adjacent blocks (p+3 and p+3(dot)). There are also minor differences in
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Figure 3.6: Stage 2 carry circuits.
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Figure 3.7: Ling adder overview.
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the group and group lookahead logic. The major difference between the Ling scheme and

the conventional CLA is that the group H signal (which replaces the group G signal from

the CLA) is available one stage earlier than the corresponding G signal. Also the group

propagate signal (P) is replaced with a signal that performs an equivalent function in the

Ling method (I).

3.3.1 Group Logic

To understand the operation of the Ling adder, consider the equation for the group G signal

in the conventional 4 bit CLA group (Figure 3.2).

G = g3
0

= g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0 (3.14)

Now consider g3. From equation 3.4 :

g3 = a3 b3

= (a3 b3) (a3 + b3)

= p+3 g3 (3.15)

It is important to note, that the equation above is true only if p3 is formed as the inclusive-or

of a3 and b3. The exclusive-or form of p3 will not work! At this point it is assumed that p3

is produced from equation 3.5. That is :

p3 = p+3 (3.16)

= a3 + b3

Now substituting equation 3.15 into equation 3.14 gives :

G = p+3 g3 + p+3 g2 + p+3 p2 g1 + p+3 p2 p1 g0

= p+3 (g3 + g2 + p2 g1 + p2 p1 g0)

= p+3 H

which provides the definition for a new type of group signal, the Ling group pseudo carry

generate. This leads to the general definition for the function h, when computed across a
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series of bits :

gj
k = p+ j hj

k (3.17)

Or equivalently :

hj
k = gj + gj�1

k (3.18)

Again referring back to Figure 3.2, G is produced by two stages of logic. The first stage

computes the bit gk and pk, and the second stage computes G from the bit gk and pk. The

Ling pseudo-generate, H, can be produced in a single stage plus a wire-OR. To see this,

expand H directly in terms of the ak and bk inputs, instead of the intermediate gk and pk :

H = a3 b3 + a2 b2 + a1 a2 b1 + a1 b1 b2

+ a0 a1 a2 b0 + a0 a1 b0 b2 + a0 a2 b0 b1 + a0 b0 b1 b2 (3.19)

If negative logic inputs are assumed, then the function H can be computed in a single

INVERT-AND-OR stage. In principle, G can also be realized in a single INVERT-AND-

OR stage, but it will require gates with up to 5 inputs, and 15 outputs must be connected

together in a large wire-OR. Figure 3.8 shows a sample Ling 4 bit group.

3.3.2 Lookahead Logic

Consider the defining equation for h across 16 bits (from equation 3.18) :

h15
0 = g15 + g14

0

= g15 + g14
12 + p14

12 g11
8 + p14

12 p11
8 g7

4 + p14
12 p11

8 p7
4 g3

0

= g15 + g14
12 + p14

12

�
g11 + p11 g10

8

�
+ p14

12 p11
8

�
g7 + p7 g6

4

�

+ p14
12 p11

8 p7
4

�
g3 + p3 g2

0

�

Assume that each of p11, p7, and p3 are produced as p+11, p+7, and p+3. Then :

h15
0 = g15 + g14

12 + p14
12

�
p+11 g11 + p+11 g10

8

�
+ p14

12 p11
8

�
p+7 g7 + p+7 g6

4

�
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a3 b2 a1 b1 a0 b0a2b3

sum3 sum2 sum1 sum0

g pp

p3

p-1

g0
1g0

2 g0

g p

p-1(dot)

hin

p-1
2 p-1

0p-1
1 p-1

p

p3(dot)

I H

Figure 3.8: 4 bit Ling adder section.
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+ p14
12 p11

8 p7
4

�
p+3 g3 + p+3 g2

0

�

= g15 + g14
12 + p14

11

�
g11 + g10

8

�
+ p14

12 p11
7

�
g7 + g6

4

�
+ p14

12 p11
8 p7

3

�
g3 + g2

0

�

= g15 + g14
12 + p14

11

�
g11 + g10

8

�
+ p14

11 p10
7

�
g7 + g6

4

�
+ p14

11 p10
7 p6

3

�
g3 + g2

0

�

= h15
12 + p14

11 h11
8 + p14

11 p10
7 h7

3 + p14
11 p10

7 p6
3 h3

0

= h15
12 + i15

12 h11
8 + i15

12 i11
8 h7

3 + i15
12 i11

8 i7
4 h3

0

where i is a new function defined as :

ii
k = pi�1 pi�2 : : : pk pk�1 (3.20)

Note that the indexes on the p terms are slightly different than that of the i term. Using this

definition of i, the formation of h across multiple groups from the group H and I signals

is exactly the same as the formation of g across multiple groups from the group G and P

signals. Thus, exactly the same group and supergroup lookahead logic can be used for

the Ling adders, as was used in the CLA. Detail for the Ling lookahead logic is shown in

Figure 3.9. The only real difference is that G and P are replaced by I and H, which for a

four bit group are :

H = h3
0

= g3 + g2 + p2 g1 + p2 p1 g0

I = i3
0

= p2 p1 p0 p+�1

Note that the formation of I requires the p+ from the most significant bit position of the

adjacent group.

One minor nuisance with this implementation of the Ling adder, is that the complement

of H is a difficult function to implement. As a result, only a positive logic version of

H is available for use by the first level of the lookahead logic. The fastest realization of

the group I signal is only available in a negative logic form. The first layer of lookahead

circuits (Figure 3.10) must be modified to accept a positive logic H and a negative logic

I. This requires a strange type of NOR gate which has a single inverting input, and from
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Figure 3.9: Group H and I connections for Ling adder.
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HI
33

HI
22

HI
11

HI
00

HI
00

HI
00

HI
00

HI
00

3 3 2 2 1 1 0 0

Figure 3.10: H and I circuits.

1 to 3 non-inverting inputs. The circuit for such a strange looking NOR gate is shown in

Figure 3.11.

3.3.3 Producing the Final Sum

The lookahead logic returns the signal hin, which is not a true carry, to each of the groups.

For example, the signal supplied to the high order group (h60 from Figure 3.9) has produced

the following signal :

h60 = h59
0 + i59

0 cin

Computation of the final sum requires the carry (c60), which can be recovered from h60 by

using equations 3.17 and 3.20:

c60 = g59
0 + p59

0 cin

= p+59 h59
0 + p+59 p+58

�1 cin
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In0

In1

Out

Vb2

Vb1

In2

Vcs

Vee

Out = In2 + In1 + In0

Figure 3.11: NOR gate with 1 inverting input and 2 non-inverting inputs.

= p+59

h
h59

0 + i59
0 cin

i

= p+59 h60

This result can be used in place of cin in equation 3.13 to modify the logic in the output

stage to produce the proper sum [3] [34].

3.3.4 Remarks on Ling Example

This Ling adder example builds upon the CLA example presented previously. The Ling

scheme is potentially faster than the CLA design because the critical path consists of 3 NOR

stages and a single EXCLUSIVE-OR stage vs 4 NOR stages and an EXCLUSIVE-OR for

the CLA. Since the wire lengths and gate counts of the two are very close, this results in a

faster adder.

3.4 Multiple Generation for Multipliers

Chapter 2 described various partial product recoding algorithms, and in particular the Booth

series of multiplication algorithms. The Booth 3 multiplication algorithm can provide
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a significant reduction in the hardware requirements over conventionally implemented

algorithms, but requires the production of 3 times the multiplicand (3M). A general purpose

adder can be used to perform this computation, by adding the multiplicand to 2 times the

multiplicand. An adder that is designed specifically for computing this times 3 multiple

will result in a significant reduction in the hardware. An example is given in the first half

of this section.

The partially redundant Booth 3 algorithm described in the previous chapter provides

the hardware reduction of the general Booth 3 algorithm, along with removal of a carry

propagate add from the critical path. The performance depends on the the fast computation

of short length multiples (say � 14 bits or so). The second half of this section shows how

these short length multiples can be efficiently and quickly computed.

3.4.1 Multiply by 3

The general idea is to replace the Ling 4 bit group (Figure 3.8), with a 7 bit group which

is specifically optimized for computing 3 times the input operand. The carry lookahead

network remains the same. Because a group now consists of 7 bits, instead of 4 bits, the

lookahead network is smaller, and could (depending on the length required) be fewer stages.

For this discussion, the assumption is that the B operand has been replaced by a shifted

copy of the A operand :

B =

n�1X
k=0

ak � 2k+1

=

nX
k=1

ak�1 � 2k

This gives the following result for gk and pk :

gk = ak ak�1 (3.21)

pk = ak + ak�1 (3.22)

Substituting this into the equation for the group G (equation 3.10)gives :

g3
0 = a3 a2 + a2 a1 + a3 a1 a0 + a2 a0 a�1



CHAPTER 3. ADDERS FOR MULTIPLICATION 62

This is much simpler than even the Ling expansion (equation 3.19). Sticking with the limit

of gates with no more than 4 inputs, it is possible to compute h6
0 in a single stage:

h6
0 = a6 a5 + a5 a4 + a4 a3 + a5 a3 a2 + a4 a2 a1 + a5 a3 a1 a0 + a4 a2 a0 a�1

A sample 7 bit times 3 group is shown in Figure 3.12. This section can be interchanged with

the four bit Ling group (Figure 3.8), with the carry lookahead logic remaining unchanged.

Internal carries required for the final sum generation (as per equation 3.13) are produced

directly from the primary inputs according to the following :

g0
0 = a0 a�1

g1
0 = a1 a0 + a0 a�1

g2
0 = a2 a1 + a1 a0 + a2 a0 a�1

g3
0 = a3 a2 + a2 a1 + a3 a1 a0 + a2 a0 a�1

g4
0 = a4 a3 + a3 a2 + a4 a2 a1 + a3 a1 a0 + a4 a2 a0 a�1

g5
0 = a5 a4 + a4 a3 + a5 a3 a2 + a4 a2 a1 + a5 a3 a1 a0 + a4 a2 a0 a�1

Note the significant sharing possible between adjacent g terms, which is taken advantage

of in the implementation.

3.4.2 Short Multiples for Multipliers

A minor change to Figure 3.12 allows production of the biased short length multiple

required by the redundant Booth 3 multiplication algorithm from Chapter 2. However, this

modification still leaves a latency of 3 stages for this multiple. As this multiple is likely to

be on the critical path through the multiplier, one stage can be eliminated by modifying the

output stages to merge the gates labeled 1 in the figure into the output stages (gates labeled

2). A sample circuit which performs this merge is shown in Figure 3.13. The length of the

short multiple can be approximately doubled by connecting two short multiple generators

together as outlined in Figures 3.14, 3.15, and 3.16. Figure 3.14 shows a 13 bit section of

a redundant times 3 multiple, in the format shown in Figure 2.18 of Chapter 2. Note that

the scheme shown here is only good for negative logic inputs and outputs. Positive logic

inputs and outputs are slightly different. The figures show a 13 bit short multiple, which

is the limit for this scheme if 4 input gates are used.
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Figure 3.12: Times 3 multiple generator, 7 bit group.
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3.4.3 Remarks on Multiple Generation

Efficient methods for producing 3 times an operand, both full length and short lengths, have

been presented above. Other useful multiples to generate would be 5 times, and 7 times

an operand, but there appears to be no better scheme than just using a conventional carry

propagate adder.

3.5 Summary

As will be shown in Chapter 5, carry propagate adders play a crucial role in the overall

performance of high speed multipliers. This chapter has described a number of efficient

and high performance adder designs which will be used in the multiplier evaluations in

the following chapters. Although the designs have been specifically tuned for ECL based

adders, the ideas can be applied to other technologies.

Specifically, this chapter has presented an adder design that uses the Ling lookahead

method. This adder has one less stage of logic along the critical path than an adder using the

traditional carry lookahead method. Since the complexity and wire lengths are comparable,

this leads to a faster adder.

Significant hardware reductions (about a 20% reduction in gate count) can result by

designing a specialized adder to compute 3M. Because the basic group size can be made

longer the performance may also improve, since fewer stages are required for the carry

propagation network.

By carefully optimizing the circuits, an efficient and fast (2 stages of logic) short multiple

generator can also be designed. The speed and efficiency of this block is crucial to the

performance of the redundant Booth 3 multiplication algorithm described in Chapter 2.



Chapter 4

Implementing Multipliers

Chapter 2 described various methods of generating partial products, which then must be

added together to form a final product. Unfortunately, the fastest method of summing

the partial products, a Wallace tree or some other related scheme, requires very complex

wiring. The lengths of these wires can affect the performance, and the wires themselves

take up valuable layout area. Manually wiring a multiplier tree is a laborious process,

which makes it difficult to accurately evaluate different multiplier organizations. To make

it possible to efficiently design many different kinds of multipliers, an automated multiplier

generator that designs the layout of partial product generators and summation networks for

multipliers is described in this chapter. Since the partial product generator and summation

network constitute the bulk of the differences between various multiplication algorithms,

many implementations can be evaluated, providing a systematic approach to multiplier

design. The layouts produced by this tool take into consideration wire lengths and delays

as a multiplier is being produced, resulting in an optimized multiplier layout.

4.1 Overview

The structure of the multiplier generator is shown in Figure 4.1. Inputs to the tool consists

of various high level parameters, such as the length and number of partial products, and the

algorithm to be used in developing the summation network. Separately input to the tool

is technology specific information, such as metal pitches, geometric information about the

68
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Layout Tool

GDT

Final Layout

L Language File
Cell Library

Geometric
Information

Technology
Information

Timing tables
from SPICE

Description
of Multiplier

Figure 4.1: Operation of the layout tool.
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primitive cells, such as the size of a CSA, I/O terminal locations, etc., and timing tables,

which have been derived from HSPICE [18]. The output of the tool is an L language

(a layout language) file, which contains cell placement information and a net list which

specifies the cell connections. The L file is then used as input to a commercial IC design tool

(GDT from Mentor Graphics). This commercial tool actually places the cells, and performs

any necessary routing using a channel router. Because most things are table driven, the tool

can quickly be modified to adapt to different technologies or layout tools.

4.2 Delay Model

An accurate delay model is an essential part of the multiplier generator if it is to account

for the effect of wire lengths on the propagation delay while the layout is being generated.

Simple models which ignore fanout, wire delays, and inputs that differ in propagation delays

(like that of Winograd [39] [40]), can lead to designs which are slower and/or larger than

the technology would allow.

The multiplier generator uses a delay model (Figure 4.2) based upon logic elements

that are fan-in limited, but each input has a different arrival time at the main logic element

(Delay1, Delay2, etc.) The main logic element has an intrinsic delay (Main Delay), and

Delay1

Delay 2

Delay 3

Delay 4

Inputs Main Delay
Output
Delay Output

Figure 4.2: Delay model.

the output also has a fixed delay (Output Delay) 1. Each output also has a delay which

1In actual use the Main Delay and the Output Delay are not really needed and in fact are set to 0.
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is proportional to the length of wire being driven. A factor for the fan-out should also be

included, but is not necessary for multipliers, since all of the CSAs have a fan-out of 1. The

individual delays are determined by running SPICE or HSPICE, as is the proportionality

constant for the wire delay.

4.3 Placement methodology

A general block diagram for a multiplication implementation is shown in Figure 4.3. A

high speed parallel multiplier consists of a partial product generator, a summation network

responsible for summing the partial products down to two final operands in a carry propagate

free manner, and a final carry propagate adder which produces the final product.

4.3.1 Partial Product Generator

To understand how the partial products are formed, an 8x8 bit example using the simple

multiplication algorithm described in Chapter 2 will be used. The partial product dot

diagram for such a multiplication is shown in Figure 4.4. Each dot represents an AND

gate which produces a single bit. The dots in the figure are numbered according to the

particular bit of the multiplicand (M) that is attached to the input of the multiplexer. These

multiplexers are then grouped into rows which share a common select line to form a single

partial product. Each row of the dot diagram represents an 8 bit wide selection multiplexer,

which selects from the possible inputs 0 and M. The select line on the 8 bit multiplexer

is controlled by a particular bit of the multiplier (Figure 4.5). A diagonal swatch of

multiplexers (Figure 4.6) consists of multiplexers that require access to the same bit of

the multiplicand. Finally a vertical column of multiplexers all have outputs of the same

arithmetic weight (Figure 4.7).

The layout tool uses the following methodology as it places the individual multiplexers

that form each partial product (refer to Figure 4.8). The first row of multiplexers is placed

from right to left corresponding to the least significant bit to the most significant bit. The

select for each partial product is then run horizontally over all the multiplexers in the row. A

vertical routing channel is allocated between each column of multiplexers. The multiplexers
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Figure 4.3: Multiplication block diagram.
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Figure 4.4: Partial products for an 8x8 multiplier.
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1 0234567

1 0234567

These bits share the
same select line

Figure 4.5: A single partial product.
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1 0234567

1 0234567

1 0234567

1 0234567

1 0234567

1 0234567

1 0234567

1 0234567

These bits share the same bits of
the multiplicand (bit 2 in this case).

Figure 4.6: Dots that connect to bit 2 of the multiplicand.

for the second row of horizontal dots are then placed immediately underneath the first row

of multiplexers, but shifted one position to the left to account for the additional arithmetic

weight of the second partial product with respect to the first. Bits of the multiplicand that

must connect to diagonal sections are routed in the routing channel and over the columns of

cells using feedthroughs provided in the layout of the individual multiplexers. The outputs

of the multiplexers are then routed to the summation network at the bottom. Note that all

bits of the same arithmetic weight are routed in the same routing channel. This makes the

wiring of the CSAs relatively simple.

Multiplexer Alignment

Early versions of this software tool allowed adjacent bits of a single partial product generator

to be unaligned in the Y direction. For some of the multiplication algorithms, a large number

of shared select wires control the multiplexers that create these bits. If these multiplexers
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1 0234567

1 0234567

1 0234567

1 0234567

1 0234567

These bits have the same arithmetic weight

Figure 4.7: Multiplexers with the same arithmetic weight.

are aligned in the Y direction (as shown in the top of Figure 4.9, these shared wires,

run horizontally in a single metal layer and occupy no vertical wiring channels. If these

multiplexers are instead allowed to be misaligned (the bottom of Figure 4.9), the wires

make vertical jogs in the routing channel, and an additional metal layer will be needed for

the vertical sections. This could cause the channel to expand in width. For this reason, the

current implementation forces all bits in a single partial product to line up in the Y direction.

An improved version of the program might allow some limited amount of misalignment to

remove "packing spaces". These are areas that are too small to fit anything into, created by

the forced alignment of the multiplexers. The final placement of the multiplexers for the

sample 8x8 multiplier is shown in Figure 4.10

An alternate approach for organizing the partial product multiplexers, that was not used,

involves aligning the partial products in such a way that selects run horizontally (same as

before), and bits of the multiplicand run vertically (Figure 4.11). Cell feedthroughs are

still required, as a particular bit of the the multiplicand may still have to reach multiplexers

that are in two adjacent columns, if the Booth 2 or higher algorithms are being realized. In
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Figure 4.11: Aligned partial products.

addition, the partial product bits in any particular routing channel are of varying arithmetic

weight, requiring unscrambling before being applied to the summation network. This

methodology is used for linear arrays, as the unscrambling can occur in sequence with

the summation of the next partial product. The unscrambling requires about as much

extra wiring as routing the bit of the multiplicand diagonally through the partial product

selectors, which was why this method was not used by the multiplier generator. Aligning

the partial products should have comparable area and performance. Note that this method

requires approximately N (N is the length of the multiplicand) routing channels, whereas

the previous method required about 2N routing channels. The tree folding optimization

(described below) reduces the number of routing channels actually needed in the previous

method to about N. The decision was made to concentrate on the first method because there

are many more partial product output wires (N2) than there are multiple wires (N), and

it will require less power to make N wires a little longer verses N2 a little longer. Also

having wires of the same arithmetic weight emerge from the same routing channel makes

the placement and wiring of the CSAs in the summation network easier.
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4.3.2 Placing the CSAs

The goal of the CSA placement phase of the multiplier generator is to place and wire up

the CSAs, given a particular partial product multiplexer arrangement. Using the minimum

amount of area and the smallest delay, the partial products are to be reduced to two numbers

which can then be added to form the final product.

The multiplexer placement scheme used by the multiplier generator creates a topology

illustrated in Figure 4.10. The multiplexers have been placed such that all multiplexer

outputs of a given arithmetic weight border the same vertical routing channel. The task

now is to place CSAs in the cell columns and wire them together in the routing channel.

Since all inputs of a correctly wired CSA must have the same arithmetic weight, and all

multiplexer outputs of a given arithmetic weight border the same vertical routing channel,

the cell column that a CSA will be placed in is completely determined by the arithmetic

weight of it’s inputs. The placement of the CSAs occurs sequentially, and as each CSA

is added it is placed below all other previously placed cells. Other phases after the initial

placement can move CSAs around in an attempt to reduce area or delay.

The assumed geometry for a CSA is shown in Figure 4.12. The power supplies run

vertically over the cell in some top level metal. The inputs are all on the right side of the

cell. The sum output is also on the right hand side, but the carry output is on the left side.

The placement and wiring of a CSA in a vertical column can be thought of as taking 3

wires of a given arithmetic weight out of the routing channel on the immediate right, and

replacing them with a single wire of the same weight and creating a new wire of weight+1

which is placed in the routing channel to the immediate left.

At any point during the placement of the CSAs, there are a number of multiplexer

outputs or previously placed CSA outputs that have not been connected to any input. The

next CSA to placed must be connected to 3 of these unwired outputs. The 3 wires are

chosen using the following heuristic :

� A virtual wire is attached to each unwired CSA or multiplexer output. This wire

extends to the bottom of the placement area. This virtual wire is added because even

if an output is never wired to a CSA, it must eventually connect to the carry propagate

adder placed at the bottom. By placing a virtual wire it makes outputs that are already



CHAPTER 4. IMPLEMENTING MULTIPLIERS 81

CSA

Power supplies run
vertically over the cell

a

b

c

Inputs

sumcarry

Outputs

Figure 4.12: Geometry for a CSA.

near the bottom more likely to be connected to a CSA input, and outputs that are near

the top (and require a long wire to reach the bottom) less likely to be connected to a

CSA input. As a result, faster outputs (near the bottom) will go through more levels

of CSAs and slow outputs (due to long wires to reach the bottom) will go through

fewer levels of CSAs, improving overall performance.

� The propagation delay from the multiplicand or multiplier select inputs to each of

the unwired outputs is computed, using the delay model described earlier. Individual

bits of multiples of the multiplicand or the multiplier select signals are assumed to

be valid at a time determine by a lookup table. This lookup table is determined by

iterative runs of the multiplier generator, which can then allow for wire delays and

possible differences in delays for individual bits of a single partial product.

� The output having the fastest propagation delay is chosen as the primary candidate

to be attached to a CSA. A search is then made for two other unwired outputs of the

same arithmetic weight. If two other unwired outputs of the same arithmetic weight
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cannot be found, then this output is skipped and the next fastest output is chosen,

etc., until a group of at least 3 wires of the same arithmetic weight are found. If no

group can be found, then this stage of the placement and wiring is finished, and the

algorithm terminates.

� A new CSA is placed in the column determined by the arithmetic weight of the group.

The primary candidate is wired to the input of the new CSA which has the longest

input delay. Of the remaining unwired outputs with the same arithmetic weight as the

primary candidate, the two slowest possible outputs are chosen which do not cause

an increase in the output time of the CSA. These outputs are then wired to the other

two inputs of the CSA.

In effect, this is a greedy algorithm, in that it is constantly choosing to add a CSA delay

along the fastest path available. There are other procedures that will be described below

that help the algorithm avoid local minimums as it places and wires the CSAs

This algorithm can run into problems, illustrated by the following example. Refer to

the top of Figure 4.13. The left section shows a collection of dots which represent unwired

outputs. The arithmetic weight of the outputs increases from right to left, with dots that are

vertically aligned being of the same arithmetic weight. The above algorithm will find the

3 outputs in the little box and wire them to a CSA. This will give an output configuration

as shown in the center section. The algorithm will repeat, giving the right section. This

sequence of CSAs will be wired in series – essentially they will be wired as a ripple carry

adder. This is too slow for a high performance implementation. The solution is to use half

adders (HA) to break the ripple carry. As shown in the bottom of Figure 4.13, the first

step uses a CSA, but also a group of half adders to reduce the unwired outputs to the final

desired form in one step.

Placement of half adders

When and where to place half adders is based upon a heuristic, which comes from the

following observations. These observations are true in the case where the propagation

delay from any input of a CSA to any output are equal and identical to the the propagation

delay from any input of a HA to any output. Also, all delays must be independent of any
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fan-out or wire length.

Observation 1 If a group of CSAs and HAs are wired to produce the minimum possible

propagation delay when adding a group of partial products, then there will be at most one

HA for any group of wires with the same arithmetic weight.

Proof : Assume that a minimum propagation delay wiring arrangement that has 2 or more

HA’s connected to wires of the same arithmetic weight. Pick any two of the HA’s (left side

of Figure 4.14). The HA’s have a propagation delay from any input to any output of �. The

H ≤ T

T

 ≤ T

T + δ T + δ

HA

 ≤ H

H + δ H + δ

HA

Sum

SumCarry

Carry

A

A

B

B

Carry Outputs at
Time  H+δ and T+δ

T

 ≤ T

T + δ T + δ

CSA H ≤ T

 ≤ H

SumCarry

A

B

Carry Output at
Time  T+δ

Sum Outputs at
Time H and T+δ

C

Sum Outputs at
Time H+δ and T+δ

InputsInputs

Figure 4.14: Transforming two HA’s into a single CSA.

top HA in the figure has arrival times of T on the A input, and an arrival time of less than

or equal to T on the B input. Thus, the propagation delay of the top HA is determined by

the A input. Similarly, for the bottom HA the propagation delay is again determined by

the A input arrival time of H, with the assumption that H is less than or equal to T. Such a

configuration can be replaced by a single CSA (right side of Figure 4.14), where the inputs

are rewired as shown. The outputs of the CSA configuration are available at the same

time or before the outputs of the HA configuration, thus the propagation delay of the entire

system cannot be increased. This substitution process can be performed as many times as

needed to reduce the number of HA’s connected to wires of the same arithmetic weight to 1

or 0. To emphasize, Observation 1 is true only when the delay effects of wires are ignored,

and the propagation delay from inputs to outputs on CSAs and HAs is the same for all input
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to output combinations. As a result it does not apply to real circuitry, but it is used as a

heuristic to assist in the placement of half adders.

Observation 2 If group of CSAs and a HA are wired to produce the minimum possible

propagation delay when adding a group of partial products, then the inputs of the HA can

be connected directly to the output of the partial product generator.

Proof : Assume that Observation 1 is applied to reduce the number of HA’s attached to

wires of a specific arithmetic weight to 1. If the HA is not connected directly to a partial

product generator output, then there must be some CSA that is connected directly to a partial

product generator output. This configuration is illustrated by the left side of Figure 4.15.

The arrival times on the A inputs of both the CSA and the HA determine the output times
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Time T+δ and ≤H+δ
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Switch A,B
inputs on the
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inputs on the

CSA

Figure 4.15: Interchanging a half adder and a carry save adder.

of the two counters2. The CSA A input arrives earlier than the A input on the HA. The two

counters can be rewired (right side of Figure 1) such that the A input on the HA arrives

2A counter refers to either a CSA or a HA
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earlier, without increasing propagation delay of the entire system. This process can be

repeated until the HA is attached to the earliest arriving signals, which would be the output

of the partial product generator.

Even though Observations 1 and 2 are not valid in the presence of wire delays and

asymmetric input propagation delays, they can be used as the basis for a heuristic to place

and wire any needed HAs. Half adders are wired as the very first counter in every column,

and the multiplier is then wired as described above. The critical path time of the multiplier is

then determined. Then starting with the most significant arithmetic weight, the half adder is

temporarily removed and the network is rewired. If the critical path time increases, then it is

concluded that a half adder is needed at this weight, and the removed half adder is replaced.

If the critical path time does not increase, then the half adder is removed permanently. The

process is then repeated for each arithmetic weight, giving a list of weights for which half

adders are required.

4.3.3 Tree Folding

The layout tool, as described so far, organizes the partial products in rows of multiplexers.

The shifting that occurs between partial products to allow for the different arithmetic

weights, causes the layout to take a trapezoidal shape (refer back to Figure 4.10). Adding

the CSAs exaggerate this shape even more, making it almost football shaped, since there are

more CSAs in columns that have the most vertical partial product bits. This shape does not

lend itself to rectangular fabrication. Although circuitry can sometimes be hidden in these

areas, it is more efficient to use a layout methodology that produces a more rectangular

shape. The method of aligning the partial products was mentioned earlier, but the wiring

of the CSAs is more difficult, since outputs of many differing arithmetic weights appear

in a single routing channel. Tree folding is another method of making the layout more

rectangular. Figure 4.16 shows the right half of Figure 4.10, plus there is a black line

through the third routing channel from the right. All multiplexers that lie to the right of

this line are folded back under as shown in Figure 4.17. Although this would seem to

create unusable holes of empty space, the technique of embedding CSAs (described below)

among the partial product multiplexers is able to move CSAs into most of these holes, so
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very little space is wasted. The same scheme can be used on the left half of the layout.

In general, this technique can eliminate almost half of the required routing channels. The

program chooses the hinge point by iteration. The right most routing channel is used as the

initial hinge point. The layout is done, and if the area is smaller than any previous layouts,

the hinge point gets moved one column to the left. This continues until the smallest area is

obtained. The method is then repeated for the left side.

The final result from the summation network emerges folded back upon itself, but some

experiments were done with adder layouts and it seems as though the size and performance

of the final carry propagate add is not effected significantly by this folding.

4.3.4 Optimizations

There are a number of optimizations which are done as the layout is being developed, to

improve the area or reduce the delay.

Embedded CSAs

To further reduce the number of vertical wiring tracks needed in the routing channels, a CSA

can be moved closer to the outputs that are connected to it’s inputs. These outputs can come

from either a partial product multiplexer or another CSA. For example, the configuration

shown in the left half of Figure 4.18 takes 3 vertical routing tracks. Moving the CSA to

a location between the outputs requires only 2 routing tracks (right side of Figure 4.18).

To provide space for such movement, the initial placement of the partial product selection

multiplexers has vertical gaps. There are also gaps created by the tree folding as described

previously. As the CSAs are added, checks are made to determine whether a CSA can be

moved into such an area, subject to the constraint that the propagation delay of the path

through this CSA cannot increase. This overly constrains the problem, because not every

CSA is along the system critical path. After the CSAs are all placed, and the critical path is

determined, additional passes are done which attempt to move the CSAs into such locations

to minimize the number of vertical routing channels.
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Wire Crossing

Wire crossing elimination is used to improve performance and wiring channel utilization.

The left side of Figure 4.19 illustrates a possible wire crossing. These wire crosses are
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Figure 4.19: Elimination of wire crossing.

created when a CSA is moved upward in a cell column as described earlier. The inputs can

be interchanged (right side of Figure 4.19), and the width of the routing channel reduced if

the following three conditions are met :

� The wires must have the same arithmetic weight.

� The delay along the critical path must not increase.
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� A cycle must not be created by the interchange. That is there cannot be feedback,

either direct or indirect, from the output of a counter to one of it’s own inputs.

Each wire crossing eliminated saves 2 routing tracks, allowing possible compression of the

routing channel. The delay may also be reduced since the wires driven by the outputs are

shorter.

Differential Wiring

A major performance gain can be obtained by selectively using differential ECL in place

of standard single ended ECL. This optimization is illustrated by the circuit shown in

Figure 4.20. The reference input in the standard gate is replaced by a second wire which

Vee

Out

In

Vcs

In

Out

Figure 4.20: Differential inverter.

is always the complement of the input. The addition of the second wire allows the voltage

swing on both wires to be half that of the single ended case, yet maintaining the same (or

better) noise margin. The gate delay of the driving gate is halved, as is the wire delay. On
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the down side, the area and power consumption of the driving gate is increased, due to the

second output buffer. A larger routing channel may also be needed to accommodate the

extra signal wire required. This optimization is very useful in reducing the delay along

critical paths. Differential wires are introduced according to the following rules:

� A candidate wire must lie along a critical path through the multiplier, and it must not

already be a differential wire.

� The addition of the second wire must not increase the routing channel width.

� If no wire can be found that satisfies both of the above conditions, then find a wire

that satisfies only the first condition and expand the routing channel.

This process is continued until no wires can be found that satisfy the first condition. The

process may also be discontinued prematurely if this is desired.

Emitter Follower Elimination

Emitter followers are output buffers that are used to provide gates with better wire driving

capability and also to provide any level shifting that is required to avoid saturating the input

transistors of any gates being driven. For differential output gates, two emitter followers

are needed. All single ended gates require some level shifting to facilitate the production

of the reference voltages. Differential gates do not require such a reference voltage, so

this level shifting may not be required. For short wires, the buffering action of the emitter

follower is also not needed, so these emitter followers can be eliminating, reducing area

and power consumption.

Power Ramping

The delay through a short wire (length � 2mm) is inversely proportional to the current

available to charge or discharge the wire (see Equation 1.2). This provides a direct trade-off

that can be made between the power consumed by an output buffer and the delay through

the wire driven by the buffer. In a full tree multiplier, there are large numbers of wires

that do not lie along the critical path, thus there is the potential for large power savings
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by tuning the current in the emitter follower output buffer. In principle, a follower driving

a completely non-critical wire could be ramped to a negligible current. For noise margin

reasons, however, there is a limit to the minimum current powering a follower, so the

practical minimum is about 1
4 the maximum follower current.

The currents powering non-critical logic gates can also be reduced, increasing the

propagation delay of the gate. The noise margin requirements are different for gates, so

they can be ramped to lower currents than can the emitter followers. The minimum current

is again limited, but this time by the fact that lower currents need larger resistor values in

the current source powering the gate. This larger resistors can consume large amounts of

layout area. Although the resistors can be hidden under routing channels, the practical limit

seems to be about 10KΩ. This again provides a ratio of about 1
4 between the smallest and

largest currents allowed.

4.4 Verification and Simulation

The correctness of the layout is constantly monitored during the layout process, but it is

still useful to have some form of cross checking to guard against the presence of software

bugs. A verification pass is performed on the final net list. This verification consists of the

following checks :

� All CSAs (carry save adders) have all inputs connected to something (No floating

inputs).

� All CSAs in the summation network have all outputs connected to something (No

bits are lost).

� All partial product multiplexer outputs are connected to a CSA input (No bits are

lost).

� All inputs to a given CSA have the same arithmetic weight (Make sure the correct

things are added).

� No input to a given CSA can be driven directly or indirectly by any output from the

same CSA (no feedback).
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� All wires have exactly one CSA input attached (Each partial product is added no

more than once).

� All wires have exactly one output attached, which could come from either a partial

product multiplexer or a CSA (No outputs are tied together).

Addition verification can also be performed by a transistor level simulation of the layout

(see Section 5.5).

4.5 Summary

An automatic software tool which assembles summation networks for multipliers has been

described. This tool produces placement and routing information for multipliers based upon

a variety of algorithms, using a CSA as the basic reduction block. Most of the algorithms

used in the tool for placement and routing have been developed by the process of trying

many different methods and refining and improving those methods that seem to work. A

number of speed, power and area optimizations have been presented.

Chapter 5 will use this software tool to evaluate implementations using various par-

tial product generation algorithm. Implementations produced with the tools will then be

compared to other implementations described in the literature.



Chapter 5

Exploring the Design Space

This chapter presents the designs of a number of different multipliers, using the partial

product generation methods described in Chapter 2. The speed, layout area, and power

for multipliers implemented with each of these methods can only be accurately determined

with a complete design, including the final layout. The layout generator described in

Chapter 4 provides a mechanism with which a careful analysis can be performed, as it can

produce a complete layout of the partial product generation and summation network. In

combination with a design for an efficient carry propagate adder and appropriate multiple

generators (both described in Chapter 3), a complete multiplier can be assembled in a mostly

automated manner. Important measures can then be extracted from these complete designs.

The target multiplier for this study is based upon the requirements of IEEE-754 double

precision floating point multiplication [12]. The format for an IEEE double precision

number is shown in Figure 5.1. The IEEE representation stores floating numbers in a

normalized, sign magnitude format. The fraction is 52 bits long, normalized (leading bit

of 1), with the "1" implied and not stored. This effectively gives a 53 bit fraction. To meet

the accuracy requirements of the standard the full 106 bit product must be computed, even

though only the high order 53 bits will be stored. Although the low order 51 bits are used

only in computing the "sticky bit" (if the low order 51 bits of the product are all 0, then the

"sticky bit " is high - see Appendix B), all of the carries from the low order bits must be

propagated into the high order bits. The critical path and most of the layout area (> 95%)

involved in a floating point multiplication is due to the multiplication of the fractions, so

96
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Normalized Fraction, f (52 bits)
Sign of Fraction,

s (1 bit)
Biased Exponent, e (11 bits)

64 Total bits

Number Represented = (-1)s (1.f)(2e-1023)

Figure 5.1: IEEE-754 double precision format.

this is the only area that will be addressed in the sections that follow.

Since the emphasis of this thesis is on speed, the delay goal for the complete fraction

multiply is 5 nsecs or less.

5.1 Technology

All multiplier designs are based upon an experimental BiCMOS process[15]. A brief

summary of the process technology is shown in Figure 5.1. Although this process is

BiCMOS, the test designs use only bipolar ECL logic with 0.5V single ended/0.25V

differential logic swings.

The basic circuits for a CSA and a Booth 2 multiplexer are shown in Figures 5.2 and

5.3. In order to provide some form of delay reference, the propagation delay curves for the

CSA are shown in Figure 5.4. This figure shows the propagation delay vs load capacitance

for a CSA with a 200�A tail current. There are three 0.5V swing single ended curves,

corresponding to an output driven through an emitter follower and 0,1 or 2 level shifting

diodes. Each emitter follower is powered by a 200�A pulldown current. Four curves are

shown for 0.25V differential swings. The differential @0 output has no emitter followers,

the others have a pair of emitter followers, each powered with 200�A, and 0,1, or 2 diodes

per follower. In this technology 1 mm of wire corresponds to about 300fF. Figure 5.5

zooms in on the area where the load capacitance is less than 100fF. The dashed vertical line

corresponds to the approximate capacitance that would be seen if another CSA was being

driven through a wire that is twice the CSA height.
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� Process :

– 0:6� (drawn) BiCMOS

– 4 layer metal, thick MET4 for power

� Bipolar Transistors :

– 16 GHz FT @ 200�A

– 2KΩ/square polysilicon resistor

� CMOS (3.3V) :

– 0:45� nfet/pfet Leff

– nfet=pfet VT = �0:6V

– 10.5 nm gate oxide thickness

Table 5.1: BiCMOS Process Parameters

VEE

VCC

Carry

Sum

a

b

c

VCS

VB1

VB2

VB3

Figure 5.2: CML/ECL Carry save adder.
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Figure 5.3: CML/ECL Booth 2 multiplexer.

5.2 High Performance Multiplier Structure

The basic structure of a multiplier is the same regardless of the particular partial product

generation algorithm that is used. The multiplier structure used in this study is shown in

Figure 5.6, and consists of a number of subsections which will be considered separately in

the discussion to follow. The delay components of a multiplier based upon this structure

are shown in Figure 5.7. In this figure time moves from left to right, with operations that

can be performed in parallel arranged vertically. The delay through all blocks, except for

the final carry propagate add, are dependent to some degree by the particular partial product

generation algorithm that is being implemented. The software layout tool described in

Chapter 4 produces the summation network, but the other parts also contribute significant

delay and layout area. Evaluation of a particular multiplier implementation must include

the effects of these other blocks.
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Figure 5.7: Multiplier timing.

Partial Product Selection and Select Wires

Each partial product is produced by a horizontal row of multiplexers which have common

select controls (the layout tool may fold the row back upon itself). Using the dot diagrams

of Chapter 2, a single horizontal row of dots corresponds to a row of multiplexers (or AND

gates). The select controls are shared by all multiplexers used in selecting a single partial

product, and in the layout scheme adopted here, run horizontally over the multiplexers (refer

back to Chapter 4 for more a more detailed description). The select controls are composed

of recoding logic, which use various bits of the multiplier to produce the required decoded

multiplexer signals, such as select Mx1, select Mx2, select Mx3, etc., which are in turn used

to choose a particular multiple of the multiplicand in forming a given partial product. The

decoded multiplexer signals are then fed to buffers which drive the long wires connecting

the multiplexers. The low level circuit design of the output driver for each select takes

advantage of the fact that the selects are mutually exclusive (only one is high at any given

time) to reduce the power consumption. During a multiply operation and after the select

lines have stabilized, exactly one of the select lines will be high. Therefore when the select

lines need to switch, only one wire will be making a high to low transition, so a single

pulldown current source can be shared by all 5 wires, instead of 5 separate pulldown current

sources.

Figure 5.8 shows a simplified driver circuit using 2 select output drivers. To expand



CHAPTER 5. EXPLORING THE DESIGN SPACE 104

this to 5 (or more) select drivers, 3 (or more) additional driver circuits would have to be

added, but they would all share the same pulldown current source shown in the figure. To

VB3
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D1
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Figure 5.8: Dual select driver.

understand how this circuit works, consider the bottom driver in the figure. There are 4

major components. The driver gate, which connects to the input, an output pullup darlington

formed by T1,T2, and D11, an output pulldown transistor T3 and the shared current source.

When the input transitions from low to high, all the gate current flows through R1,

creating a voltage drop across R1. The output darlington voltage will be low. There is no

current through R2 and no voltage drop between the base and collector of T3. This makes

1D1 reduces the gain of the output stage to reduce ringing
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transistor T3 look like a diode that connects the shared current source to the output, pulling

the output down very quickly, with the full force of the shared current source (remember

exactly 1 output is high at any one time).

When the input transitions from high to low, all of the gate current is steered through

R2, creating a voltage drop across R2, turning off transistor T3. At the same time there is

no current through R1, therefore no voltage drop across R1, causing the darlington to pull

up very fast. The current through R2 also provides a trickle current through the darlington

to establish the output high voltage.

To reduce the wire delay, the voltage swing on the wires is reduced to 300mV, from

the 500mV nominal swing for the other circuits, without sacrificing noise margin. Since

exactly 1 wire is high at any given time, it can act like a reference voltage to the other 4

wires that are low (or are in transition to a low). As a result, much of the DC noise (such

as voltage drops on the power supply rails) on the 5 select wires becomes common mode

noise, in much the same way that DC noise becomes common mode noise for a differential

driver. This allows a somewhat reduced voltage swing without sacrificing noise margins.

In the comparisons that follow, the recoding time plus the wire delay time is assumed

to be fast enough that it is never in the critical path. Since the layout tool reports back the

actual lengths of the select wires, the power driving the wire is adjusted to assure that this

delay time.

Multiplicand and Multiples Wires

In parallel with the partial product selection, any required multiples of the multiplicand (M)

must be computed and distributed to the partial product multiplexers. The delay can be

separated into two components :

� Hard Multiple Generation : This applies only to higher (� 3) Booth algorithms.

Based upon the full carry propagate adder described below, the delay of a full 53 bit

multiple is estimated to be 700 psec, with a power consumption of 350mW for the

3M multiple and 500mW for 5M and 7M. The area of these adders is about 0.5 mm2

for 3M, and 0.7 mm2 for 5M and 7M. The reduction in the size and area for the 3M

multiple is obtained by using the method described in Chapter 3.
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� Multiple Distribution : This is the wire delay due to the distribution of the bits of

the multiplicand and any required multiples. These multiples run diagonally across

the partial product multiplexers, so these wires are longer than the selection wires.

Again the wire lengths are available as output from the layout program, and the power

driving the wires can be adjusted (within reason) to give any desired wire delay.

The multiple generation and distribution is constrained to be less than 600 psec, by

adjusting the power used in driving the long wires. This time is determined by the largest

single transistor available in the technology (2mA), the typical wire length for multiples

in driving to the partial product generator, and the delay of a buffering gate for driving

the multiples. When a hard multiple is distributed, this constraint cannot be met (the

hard multiple takes 700 psec to produce because it requires a long length carry propagate

addition), so the driving current is limited to 2 ma (largest single transistor available) per

wire and the propagation delay is increased.

The Summation Network

This block contributes the bulk of the layout area and power. The software layout program

described in Chapter 4 generates complete layout of this section, providing accurate (within

10% of SPICE) delay, power, and area estimates. In addition the lengths of the select and

multiples wires are also computed.

Carry Propagate Addition

Since all multipliers being considered in this section are 53x53 bits, producing a 106 bit

product, a 106 bit carry propagate adder is needed. This adder can be considered as a fixed

overhead, since it is the same for all algorithms. Such an adder has been designed and layed

out, using the modified Ling scheme presented in Chapter 3. This adder accepts two 106 bit

input operands and produces the high order 66 bits of the product, plus a single bit which

indicates whether the low order 40 bits of the product are exactly zero. The important

measurables for this adder are shown in Table 5.2. These adder parameters were obtained

assuming a nominal -5V supply at 100� C, driving no load. The timing information is based

on SPICE simulations of the critical path using capacitances extracted from the layout.
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Area (mm2) Delay (nsec) Power (Watts)
1.125 860 1.13

Table 5.2: 106 Bit Carry Propagate Adder Parameters

Because the adder design was done in a standard cell manner, the wire capacitance was

increased by 50% in the simulation runs to account for possible Miller capacitance between

simultaneously switching, adjacent wires.

5.2.1 Criteria in Evaluating Multipliers

There are three important quantities that can be used to evaluate the implementation of

various multiplication algorithms.

Delay

All delays are for the entire multiply operation, not just the summation network time.

Power

The power values shown in the evaluation tables include all of the power necessary to

operate the multiplier.

Layout Area

The area includes all components of the multiplier. The area can also impact the perfor-

mance, in that larger area generally means longer wires and more wire delay.

5.2.2 Test Configurations

The evaluation of the various multiplier algorithms are based on five variations, which can

be produced by adjusting various parameters of the layout tool. All configurations are based

on a fully parallel implementation of the summation network.
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� Fastest : This variation attempts to maximize the speed of the multiplier, ignoring

area and power, except in the way they impact the performance (for example through

wire lengths). Full use of differential wiring is used where possible to reduce the

critical path time.

� Minimum Area : In this variation, all critical paths are fully powered, single ended

swings. Differential wiring is not used, with the exception that differential, level 0

signals are used if no additional area is needed for the extra wire. This configuration

is close to a traditional ECL implementation, giving the minimum area and minimum

power for a full tree ECL design.

� Minimum Width : The goal is to improve the speed of the minimum area variation

by allowing differential wiring wherever the impact on the layout area is negligible.

Differential wiring is used where possible to reduce the critical path time, as long

as the width of the routing channels (and hence the entire layout) does not increase.

The use of differential wiring sometimes requires an extra output buffer, which

increases the height of the layout slightly, so the actual area will be a little more

than the minimum area variation. This variation is interesting in that it shows the

performance increment, with only a small increase in layout area, that is possible

with the selective use of differential wiring.

� 90% Summation Network Speed : Since the cost of the maximum possible speed

may be quite high (in terms of area and power), an interesting configuration is one in

which the speed of the summation network is not pushed to it’s absolute maximum,

but instead is only 90% of the maximum speed. That is, the delay of the summation

network in this configuration is Fastest
0:9 .

� 75% Summation Network Speed : Similar to the 90% speed configuration, except

that the speed of the summation network is pushed only to 75% of the maximum

speed available.

All of the above configurations vary only the speed, power and area of the summation

network. Since there are other components in the complete multiplier (such as adders,

recoders, wire drivers, etc.), the actual effect on the entire system will be reduced.
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5.3 Which Algorithm?

Physically large layouts will have problems with wire delays, since the larger the multiplier,

the longer the wires are that interconnect the various components of the multiplier. In

addition, more circuitry generally means more power consumption. An appropriate choice

of algorithm will produce as small a layout as possible, consistent with the performance

goals. Various algorithms and implementation methods are available to the designer, and a

careful evaluation of each is necessary to obtain a "good" design. Implementations of the

conventional partial product generation algorithms described in Chapter 2 will be compared

and contrasted, and some comments will be made about them. Then the implementations

of the redundant Booth 3 algorithm (also presented in Chapter 2) and an improvement to

the conventional Booth 3 algorithm will be compared to the conventional algorithms.

5.3.1 Conventional Algorithms

The conventional algorithms to be compared are based upon 53x53 unsigned multiplication.

The results include all components of each multiplier and are are summarized in Table 5.3

and shown graphically in Figures 5.9, 5.10, and 5.11.

Comments on Conventional Algorithm Implementations

Referring to Table 5.3 it is obvious that simple multiplication is markedly inferior to the

Booth based algorithms in all important measures. Others have reached different conclu-

sions, such as Santoro [24], Jouppi et el[13], and Adlietta et el [1], so some explanation is

in order.

� Power - The Santoro and Jouppi implementations are based on CMOS. The power

characteristics are quite different between ECL and CMOS designs, the former being

dominated by static power, the latter almost entirely dynamic power. Consequentially,

power consumption measurements based upon one technology probably can not be

applied directly to the other. It seems possible, however, that a CMOS multiplexer

might consume less power than a CMOS CSA, if only because the former has one

output and the latter has two, so Booth encoding may still save power.
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Variation Algorithm Delay (nsec) Area (mm2) Power (Watts)

Simple 3.1 33.0 26.9
Fastest Booth 2 2.6 15.4 14.4

Booth 3 3.0 11.0 9.7
Booth 4 3.1 13.7 10.3

Simple 4.2 18.2 15.0
Minimum Width Booth 2 3.5 9.3 7.2

Booth 3 3.7 8.0 6.1
Booth 4 3.7 10.7 7.3

Simple 4.7 17.1 11.1
Minimum Area Booth 2 3.7 9.2 6.4

Booth 3 4.0 7.8 5.3
Booth 4 4.0 10.6 6.9

Simple 3.3 29.4 24.5
90% Tree Speed Booth 2 2.8 14.3 12.9

Booth 3 3.2 10.4 9.0
Booth 4 3.2 12.6 9.8

Simple 3.7 24.5 20.4
75% Tree Speed Booth 2 3.0 12.0 10.9

Booth 3 3.4 9.3 7.8
Booth 4 3.5 11.4 8.6

Table 5.3: Delay/Area/Power of Conventional Multipliers
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The multiplier described by Adlietta is based on an ECL implementation, but is a

gate array based design. ECL custom design allows the construction of a Booth

multiplexer using 2 current sources (one for the multiplexer, one for the emitter

follower output stage), whereas a CSA requires 4 current sources. The Booth 2

algorithm essentially replaces half of the CSAs required by simple multiplication

with an equal number of multiplexers, at a considerable savings in power. If the

gate array library doesn’t have a 2 current source Booth multiplexer available, then

it will have to be constructed out of multiplexer and an EXCLUSIVE OR. This

would require 4 current sources, increasing the power consumption significantly and

probably removing any difference in power consumption between the two methods.

� Delay - Simple multiplication is not significantly slower than Booth based imple-

mentations. Even though there are twice as many partial products to be added, the

delay through the summation network is basically logarithmic in the number of par-

tial products, minimizing the difference. Any difference can be explained by the

replacement of the the top two layers of CSA delay with a single multiplexer delay,

the delay of a CSA and a multiplexer being comparable. Also the extra area of simple

multiplication contributes to longer wires, and thus longer delays.

� Area - The Booth 2 multiplexers used in this study are 24:6� in height, compared

to 31:6� for a CSA (the widths are the same). A one for one replacement of

CSA’s with multiplexers, as happens when comparing simple multiplication to Booth

2 multiplication, should result in a modest reduction in total layout area. However,

simple multiplication still requires AND gates for the selection of the partial products.

The actual logic gate can frequently be designed into a CSA, with only a slight

increase in area of the CSA. The wires distributing the multiplicand and the multiplier

throughout the tree still require area, so the partial product selection still requires non-

zero layout area. The remaining area difference can be explained by level shifters

that are required for the multiplicand at 2
3 of the inputs of all of the top level CSAs.

Santoro observes that the size of the Booth multiplexers is limited by the horizontal

wire pitch. Figure 5.12 shows a possible CMOS multiplexer. This particular version

has 4 horizontal wires crossing through each row of multiplexers that create a single
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Figure 5.12: CMOS Booth 2 multiplexer.

partial product (other designs could have from 3 to 5 horizontal wires). Assuming

5 horizontal wires per partial product, an NxN bit Booth multiplier would have 5N
2

total horizontal wires whereas simple multiplication would have N horizontal wires.

If a CSA is exactly the same size as a Booth multiplexer, then simple multiplication

would still be larger due to the N horizontal wires needed to control the AND gates

which generate the partial products.

If the multiplexers are not wire limited, it is extremely unlikely that a multiplexer

will be larger than a CSA, since the circuit is much simpler. Figures 5.2, 5.3, 5.12,

and 5.13 show designs for ECL and CMOS multiplexers and CSAs and clearly the

multiplexers are simpler than the CSAs.

The recoders that drive the select lines which control the multiplexers or AND gates

could explain how it might be possible for simple multiplication to be comparable

(or even smaller) to Booth encoding in CMOS. A relatively small bipolar transistor

drives a large amount of current, so increasing the number of horizontal wires does

not increase the size of the Booth multiplexer select drivers significantly. In contrast,
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Figure 5.13: CMOS carry save adder.

CMOS will require additional large area transistors to drive the additional long select

wires. The increase in the number of long select wires, from N to 5N
2 , may increase

the area of the select generators enough to overcome the modest savings provided by

Booth encoding, if the 5 wire version of the multiplexer is used.

Returning to Table 5.3, the Booth 4 algorithm has no advantage over the Booth 3

algorithm. The reason for this is that the savings in CSAs that result from the reduction

in partial products is more than made up for by the extra adders required to generate the 2

additional hard multiples. The partial product select multiplexers are also almost twice the

area (80� vs 40:5� in height). Booth 4 may become more competitive if the length of the

multiplication is increased, since the area required for the hard multiple generation grows

linearly with the length, while the area in the summation network grows as the square of

the length. For lengths� 64, Booth 4 does not seem to be competitive.

In summary, only Booth 2 and Booth 3 seem to be viable algorithms. Booth 2 is

somewhat faster, but Booth 3 is smaller in area and consumes less power.
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Delay (nsec) Area (mm2) Adder Power (Watts) Driver Power Total Power
0.2 0.53 0.50 0.76 1.26

Table 5.4: Delay/Area/Power of 55 Bit Multiple Generator, built from 14 bit Subsections

5.3.2 Partially Redundant Booth

Chapter 2 presented a new class of multiplication algorithms, combining the Booth 3

algorithm with a partially redundant representation for the hard multiples. In principle, use

of this algorithm should be able to approach the small layout area and power of the straight

Booth 3 algorithm, with the speed of the Booth 2 algorithm. Implementations using

this algorithm require the determination of an extra parameter, the carry interval in the

partially redundant representation of the multiples. Before comparing this algorithm with

the more conventional algorithms described above, a reasonable value for this parameter is

needed. A small carry interval reduces the length of the small adders necessary for multiple

generation, however too small an interval causes the number of CSAs (and so the power

and area) to go up. A large interval reduces the number of CSAs required, but the delay of

the carry propagate adder generating the small multiples increases the total delay through

the multiplier.

Redundant Multiple Generation

The model for the short multiples adders will be based upon the actual implementation of

a 14 bit 3X adder. Simple modifications will be made to allow the adder length to vary.

The vital statistics for this 14 bit multiple generator, when it is used to construct a 55 bit

multiple generator, are shown in Table 5.4. The delay does not include the time to drive the

long wires at the output, as this delay is accounted for separately.

Using the method described in Chapter 3, it is possible to build short multiple generators

of up to 14 bits using only two stages of logic. The delay of the longer generators is slightly

more than that of the shorter adders, but the delay difference can be minimized by using

more power along a single wire that propagates an intermediate carry from the low order 8

bits to the high order 6 bits. Although the delay is really a continuous function of the length
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of the adder, the difference between adders of similar lengths is minimal, of the order of

50 psecs between a length 5 adder and a length 14 adder. Although this is a significant

variation in the adder times ( 25%), it is a very small fraction of the total multiply time

(2% or less). The power consumption per bit is also roughly constant, with the difference

between a length 5 adder and a length 14 adder being about 10mW. Since most of the power

and delay involved in the multiple generation is in driving the multiples to all the partial

product multiplexers, a more refined model will not be presented. Because the delay and

power differences between the shorter multiple generators and the longer ones are very

small, they will be ignored.

Varying the carry interval

Tables 5.5 and 5.6 shows the implementation parameters for the redundant Booth 3 algorithm

as the carry interval is varied from 5 bits to 14 bits. The results are also shown graphically

in Figures 5.14, 5.15, and 5.16.

Comments on the redundant Booth algorithm

Referring to Tables 5.5, 5.6 and Figures 5.14, 5.15 and 5.16 some general patterns can be

discerned. Generally, the delay is not dependant on the carry interval. This is due to the

logarithmic nature of the delay of the summation network. There are occasional aberrations

(such as the data for a carry interval of 8), but these are due to fact that the layout program

happens to stumble upon a particularly good solution under some circumstances. The

area shows a more definite decrease as the carry interval is increased, again a pretty much

expected result, since fewer CSAs and multiplexers are required. A somewhat surprising

result is that the power, like the delay, is mostly independent of the carry interval. The reason

for this is that most of the additional CSAs required as the carry interval is decreased lie off

of the critical path, so these CSAs can be powered down significantly without increasing

the delay. In addition, the summation network has been made so fast that the total delay

is beginning to be dominated by the final carry propagate adder, and the driving of the

long wires that distribute the multiplicand and select control wires through the summation

network, not the delay of the summation network itself. It seems as though any carry
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Variation Carry Interval Delay (nsec) Area (mm2) Power (Watts)

5 2.7 16.4 12.1
6 2.8 15.8 11.5
7 2.7 14.9 11.4
8 2.6 14.0 11.7

Fastest 9 2.6 13.7 10.7
10 2.7 13.6 10.8
11 2.7 12.8 10.5
12 2.7 13.1 10.7
13 2.6 12.6 10.7
14 2.6 13.0 10.5

5 3.4 11.0 7.1
6 3.5 10.7 6.9
7 3.5 10.5 6.7
8 3.5 9.8 6.4

Minimum Width 9 3.3 9.8 6.9
10 3.5 9.5 6.4
11 3.7 9.1 6.0
12 3.6 9.4 6.2
13 3.4 9.1 6.3
14 3.6 8.9 5.8

5 4.0 10.9 6.1
6 3.8 10.5 6.1
7 3.9 10.2 5.9
8 3.6 9.7 6.3

Minimum Area 9 3.9 9.6 5.7
10 3.7 9.4 6.0
11 3.8 9.1 5.9
12 3.7 9.3 5.9
13 3.6 8.9 5.9
14 3.7 8.9 5.6

Table 5.5: Delay/Area/Power of Redundant Booth 3 Multipliers



CHAPTER 5. EXPLORING THE DESIGN SPACE 120

Variation Carry Interval Delay (nsec) Area (mm2) Power (Watts)

5 2.8 14.9 11.0
6 2.9 14.2 10.6
7 2.8 13.7 10.6
8 2.7 13.2 10.6

90% Tree Speed 9 2.8 12.6 9.9
10 2.8 12.6 9.7
11 2.9 12.0 9.5
12 2.8 12.0 9.4
13 2.7 11.7 9.5
14 2.8 12.2 9.7

5 3.1 12.0 8.6
6 3.2 11.8 8.3
7 3.1 12.0 8.8
8 3.0 12.0 9.3

75% Tree Speed 9 3.1 10.6 8.2
10 3.1 10.8 8.3
11 3.1 10.8 8.2
12 3.1 10.6 8.1
13 3.0 10.6 8.4
14 3.1 10.3 8.0

Table 5.6: Delay/Area/Power of Redundant Booth 3 Multipliers (continued)
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Figure 5.14: Delay of redundant Booth 3 implementations.
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Figure 5.15: Area of redundant Booth 3 implementations.
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Bits Arrival Time
0-14 200 psec

15-36 400 psec
37-54 700 psec

Table 5.7: Improved Booth 3 - Partial Product Bit Delays

interval between 10 and 14 are about equally acceptable.

There is no indication that carry interval values that are not relatively prime to 3 are

any worse than any other carry interval, as hinted at towards the end of Chapter 2. This

is because this effect is buried by other effects, such as wire delays, asymmetric input

delays on the CSAs, the logarithmic nature of the delay of the summation network, and the

optimization efforts of the layout program.

5.3.3 Improved Booth 3

To illustrate the versatility of the layout program, a different kind of optimization, based

upon the Booth 3 algorithm is also presented. Normally, the bits of the "hard multiple"

are assumed to be available at about the same time, as would be the case (approximately)

with a carry lookahead based hard multiple generator. That is, bit 0 of the hard multiple is

assumed to be available at about the same time as the highest order bit. A multiple generator

based upon a ripple carry adder would not have a uniform arrival time, but instead the bits

of lower significance would be available earlier than bits of high significance. From the

point of view of the summation network in a multiplier, parts of a single partial product

would be available at different times. A full ripple carry adder is far too slow to use in a

large multiplier, instead the model used here is based on a carry lookahead adder, where

low order bits which require few levels of lookahead are available early, and higher order

bits are later, due to additional levels of lookahead and longer wires. The assumed delay for

various bits of an adder which multiplies by 3 is shown in Table 5.7. Taking advantage of

the differing arrival times of the hard multiple would be difficult using a conventional tree

approach, such as a Wallace tree or a 4-2 tree, but the layout program can take advantage

of early arriving bits to reduce the power and area of the summation network.
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5.4 Comparing the Algorithms

Figures 5.17, 5.18, and 5.19 compare the implementation delay, power and area of the two

conventional algorithms (Booth 2 and Booth 3) with the redundant Booth 3 and improved

Booth 3 algorithm. The carry interval for the redundant Booth 3 algorithm was chosen to

be 14, mainly because that was the size used in the test implementation to be described

below. Any interval between 10 and 14 could have been chosen with similar results. Like

the earlier comparisons, the basic multiplier is a 53x53 bit integer multiply. The redundant

Booth 3 algorithm is essentially the same speed as the Booth 2 algorithm, yet makes modest

savings in both area and power consumption. The improved Booth 3 algorithm has better

power and area numbers than the conventional Booth 3 algorithm, but is roughly comparable

in performance. Because of the early arrival of certain bits of the partial products, less use is

made of differential wiring to maintain the performance, which reduces the area and power

requirements.

5.5 Fabrication

In order prove the design flow, a test multiplier was fabricated in the experimental BiCMOS

process described previously. The implementation described here is that of a 53x53 integer

multiplier producing a 106 bit product. Due to pad and area limitations, only the high order

66 bits of the product are computed, with the low order 40 bits encoded into a single "sticky"

bit, using the method described in Appendix B.1. The algorithm used was the redundant

Booth 3 method described in Chapter 2, with 14 bit small adders. CMOS transistors are

used only as capacitors on internal voltage references.

After the entire multiplier was assembled, and the final design rule checks performed,

a net list of the entire multiplier was extracted from the layout and run through a custom

designed simulator built upon the commercial simulator LSIM (from Mentor Graphics).

The simulator works at the transistor and resistor level, and is approximately 3 orders of

magnitude faster than HSPICE at circuit simulation. It is not quite as accurate, and also

provides no timing information. Approximately 3000 carefully selected vectors were run

through the simulated multiplier. The simulation run takes about 10 hours of compute time,
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Figure 5.17: Delay comparison of multiplication algorithms. Delays are in nsecs.



CHAPTER 5. EXPLORING THE DESIGN SPACE 127

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fastest Minimum
Width

Minimum
Area

90%
Speed

75%
Speed

Booth 2

ABooth 3-14

Booth 3

ABooth 3 Improved

R
el

at
iv

e 
A

re
a

15.4

13.0

11.0

9.3

8.0 8.1

9.2

7.8 7.8

14.3

12.2

10.4

9.6

12.0

10.3

9.3

8.4

8.9

10.4

8.9

Figure 5.18: Area comparison of multiplication algorithms. Areas are in mm2.



CHAPTER 5. EXPLORING THE DESIGN SPACE 128

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fastest Minimum
Width

Minimum
Area

90%
Speed

75%
Speed

Booth 2

A
A

Booth 3-14

Booth 3

A
Booth3 Improved

R
el

at
iv

e 
Po

w
er

14.4

10.5

9.7

8.9

7.2

5.8
6.1

5.9

6.4

5.3 5.1

12.9

9.7

9.0

8.0

10.9

8.0
7.8

6.3

5.6

Figure 5.19: Power comparison of multiplication algorithms. Power is in Watts.
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since the final multiplier has about 60,000 bipolar transistors.

The design goal for the multiplier is a propagation delay of 3.5 nsec (typical, 4.4 nsec

worst case) at a power consumption of 4.5 Watts with a single 5V supply. The delay goal

is dictated by limitations in the power dissipation of the package. The final layout size of

the multiplier is 4 mm by 2.5 mm (excluding test and I/O circuitry). The floor plan of the

chip is shown in Figure 5.20, and a photograph of the chip is shown in Figure 5.21.

5.5.1 Fabrication Results

After the design was taped out (December, 1992), a bug was found in the power ramping

section of the summation network layout tool. This bug caused all output drivers in the

summation network to be ramped down in power, even those drivers that drove wires

along critical paths. Because the transistor level circuit simulator failed to provide any

kind of timing information, this error was allowed to propagate to the final design. After

reexamining the critical paths, it was determined that the multiplier would be slower and

consume less power than expected (5 nsec delay and about 3.5 Watts).

Unfortunately the project driving the development of the fabrication line was cancelled

before the yield problems of the fab were solved. Three wafers were obtained, in May

1993, and some parts on one wafer showed some functionality, but no completely working

multipliers were obtained.

5.6 Comparison with Other Implementations

Comparisons with other implementations described in the literature is informative, because

it provides reference points in evaluating a particular design. However such comparisons are

less than straightforward, due to the widely varying technologies available. For example,

there are no full 53x53, ECL multipliers described in the literature, so comparable, rather

than identical, designs must be used instead.

Table 5.8 summarizes the important parameters for the multiplier design described here,

and also for comparable designs described by Adiletta et al.[1], Mori et al. [19], Goto et

al.[11], and Elkind et al.[8]. The table shows that the ECL based design described here is
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Figure 5.21: Photo of 53x53 multiplier chip. Die size is 5mm x 3mm.
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This thesis Adiletta Mori Goto Elkind
Technology ECL ECL CMOS CMOS ECL
Multiplier Size 53x53 32x32 54x54 54x54 56x56
Design Style Custom Gate array Custom Custom Custom
Type Full Tree Full Tree Full Tree Full Tree Iterative
Lithography 0:6� 2� 0:5� 0:8� 2�
Area 10mm2 96mm2 12:5mm2 12:9mm2 13:7mm2

22.4 nsec
Delay 3.5 nsec 9 nsec 10 nsec 13 nsec 14 clocks

@40MHz @600MHz
Power 4.5 W 30.9 W 0.87 W 0.875 W Not Stated
Power x Delay 15.7 278 8.7 11.4

Table 5.8: Multiplier Designs

faster than comparable CMOS designs and also competitive in area. ECL designs consume

high power, so careful circuit design is necessary to minimize the power consumption. With

such care, the power-delay product of ECL designs can be less than a factor of two larger

than CMOS designs.

5.7 Improvements

There are a couple of simple improvements that could be made to the multiplier designs

presented in this chapter. First, because of limitations in the tools, only a 2 layer channel

router was available. A good 3 layer router would have reduced the layout area of all the

multipliers by 10-20%. Second, the power consumption could be reduced by the addition

of a second power supply, with a voltage of -2.5. Many output emitter followers could be

terminated to this supply rather than the -5V supply, reducing the power consumption in

these drivers by 50%. In general about 1
3 of the current in the designs could be terminated to

this reduced voltage. This would reduce the total power consumption of all of the designs

by about 15%.
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5.8 Delay and Wires

Finally, in order to explore the effects of wires and asymmetric input delays in multiplier

design, a summation network for a special Booth 3-14 multiplier was produced by the

layout tool. All power ramping and the use of differential wiring was turned off in order

to preserve the critical paths through the summation network and make all the CSAs in the

summation network identical (except for any needed level shifting).

The critical path, through the resulting summation network, had a delay of 2.0 nsec and

went through 9 levels of CSAs. This compares to 8 levels of CSAs if straight Wallace tree

wiring is used. Of the total delay, 1.25 nsecs is used just for driving the wires between

CSAs, leaving only 750 psec explicitly contributed by the intrinsic delays of the CSAs.

Even though the wire component is large, counting levels of CSAs might still be useful in

estimating performance if all of the wires were about the same length. Then the average

wire delay (in this case 125 psec) could just be added to the CSA delay, becoming part of

the delay associated with the "gate delay" of the CSA. In actuality, the wire delays along the

critical path varied wildly, from 7 psec to 331 psec, with a standard deviation of 119 psec.

This would seem to indicate that the efforts of the layout tool to take into consideration wire

length when it places CSAs and multiplexers, is valuable in improving the performance of

the summation network.

Another indication that considering wire and asymmetric input delays is important in

improving the performance, can be seen from looking at other non-critical paths in the

summation network. Some delay paths go through 11 CSA levels, and yet are faster than

the critical path of 9 CSA levels. This is not even the most extreme case. The 11 level path

has a delay of 1.4 nsec, yet is faster than another path that goes through only 8 levels (in

1.85 nsec). The path through more CSA levels is faster because of wires and also because

it goes through faster inputs on the CSAs. Wires and asymmetric input delays matter, and

need to be taken into consideration as the summation network is designed.
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5.9 Summary

Of the conventional partial product generation algorithms considered in this chapter, the

Booth 3 algorithm is the most efficient in power and area, but is slower due to the need

for an expensive carry propagate addition when computing "hard" multiples. The Booth 2

algorithm is the fastest, but is also quite power and area hungry. Other conventional

algorithms, such as Booth 4 and simple multiplication, do not seem to be competitive with

the first two.

Implementations using the redundant Booth 3 algorithm compare quite favorably with

the conventional algorithms. The fastest version of this algorithm is as fast as the Booth 2

algorithm, but provides modest decreases in both power (� 25%) and area (� 15%). The

redundant Booth algorithm also compares favorably with the conventional(nonredundant)

Booth 3 in both area and power, but is faster. Serious consideration should be given to this

class of algorithms.

Wires and input delay variations are important when designing summation networks, if

the highest possible performance is desired. Ignoring these effects can lead to designs that

are not as fast as they could be.



Chapter 6

Conclusions

The primary objective of this thesis has been to present a new type of partial product gener-

ation algorithm (Redundant Booth), to reduce the implementation to practice, and to show

through simulation and design that this algorithm is competitive with other more commonly

used algorithms when used for high performance implementations. Modest improvements

in area (about 15%) and power (about 25%) over more conventional algorithms have been

shown using this algorithm. Although no performance increment has been demonstrated,

this is not terribly surprising given the logarithmic nature of the summation network which

adds the partial products.

Secondarily, this thesis has shown that algorithms based upon the Booth partial product

method are distinctly superior in power and area when compared to non-Booth encoded

methods. This result must be used carefully if applied to other technologies, since different

trade-offs may apply. Partial product methods higher than Booth 3 do not seem to be

worthwhile, since the savings due to the reduction of the partial products do not seem to

justify the extra hardware required for the generation and distribution of the "hard multiples".

This conclusion may not apply for multiplication lengths larger than 64 bits. The reason for

this is that the "hard multiple" logic increases linearly with the multiplication length, but

the summation network hardware increases with the square of the multiplication length.

The use of carry save adders in a Wallace tree (or similar configuration) is so very fast at

summing partial products, that it seems that there is very little performance to be gained by

trying to optimize the architecture of this component further. The delay effects of the other

135
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pieces of a multiplier are at least as important as the summation network in determining

the final performance. Figure 6.1 shows the breakdown of delays of a multiplier using the

redundant Booth 3 algorithm, with 14 bit small adders. The summation network is less than

AAAAAA
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AAAAAA
AAAAAA
AAAAAA

Summation
Network

49%

Compute
Multiple 7%

Drive Multiple
Wires
14%

Final CPA
30%

Figure 6.1: Delay components of Booth 3-14 multiplier.

1
2 of the total delay. This reduces the performance sensitivity of the entire multiplier to small

changes in the summation network delay. As a result, somewhat slower, but more compact

structures (such as linear arrays or hybrid tree/array structures) may be competitive with

the faster tree approaches. Significant improvements in multiplier performance will come

only from using faster circuits, or by using a completely different approach.

The summation network and partial product generation logic consume most of the power

and area of a multiplier, so there may be more opportunities for improving multipliers by

optimizing summation networks to try to minimize these factors. Reducing the number of

partial products and creating efficient ways of driving the long wires needed in controlling

and providing multiples to the partial product generators are areas where further work may

prove fruitful.

Since wire delays are a substantial fraction of the total delay in both the summation
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network and the carry propagate adder, efforts to minimize the area may also improve the

performance. Configuring the CSAs in a linear array arrangement is smaller and has shorter

wires than tree configurations. In the future, if wires become relatively more expensive,

such linear arrays may become competitive with tree approaches. At the present time trees

still seem to be faster.

Finally, good low level circuit design seems to be very important in producing good

multiplier designs. A modest improvement in the design of CSAs is important, because so

many of them are required. From 900 to 2500 carry save adders were used in the designs

presented in this thesis. This thesis has presented a power efficient circuit which can be used

to drive a group of long wires, when it is known that exactly 1 of the wires can be high at

any time. This single circuit reduces the power of the entire multiplier by about 8%, which

seems modest, but it is only a single circuit. Another example where concentrating on the

circuits can pay off is in power ramping non-critical paths, which saves about 30% of the

power at virtually no performance cost. These examples illustrate that good circuit design,

as well as good architectural decisions, are necessary if the best performing multipliers are

to be built.



Appendix A

Sign Extension in Booth Multipliers

This appendix shows the sign extension constants that are needed when using Booth’s

multiplication algorithm are computed. The method will be illustrated for the 16x16 bit

Booth 2 multiplication example given in Chapter 2. Once the basic technique is understood

it is easily adapted to the higher Booth algorithms and also to the redundant Booth method

of partial product generation. The example will be that of an unsigned multiplication, but

the final section of this appendix will discuss the modifications that are required for signed

arithmetic.

A.1 Sign Extension for Unsigned Multiplication

The partial products for the 16x16 multiply example, assuming that all partial products

are positive, are shown in Figure A.1. Each partial product, except for the bottom one, is

17 bits long, since numbers as large as 2 times the multiplicand must be dealt with. The

bottom partial product is 16 bits long, since the multiplier must be padded with 2 zeroes to

guarantee a positive result. Figure A.2 shows the partial products if they all happen to be

negative. Using 2’s complement representation, every bit of the negated partial products

is complemented, including any leading zeroes, and 1 is added at the least significant bit.

The bottom partial product is never negated, because the 0 padding assures that it is always

positive. The triangle of 1’s on the left hand side can be summed to produce Figure A.3,

which is exactly equivalent to the situation shown in Figure A.2. Now, suppose that a
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Figure A.1: 16 bit Booth 2 multiplication with positive partial products.
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Figure A.2: 16 bit Booth 2 multiplication with negative partial products.
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Figure A.3: Negative partial products with summed sign extension.

particular partial product turns out to not be negative. The leading string of ones in that

particular partial product can be converted back to a leading of zeroes, by adding a single

1 at the least significant bit of the string. Referring back to the selection table shown in

Figure A.1, a partial product is positive only if the most significant bit of the select bits for

that partial product is 0. Additionally, a 1 is added into the least significant bit of a partial

product only if it is negative. Figure A.4 illustrates this configuration. The S bits represent

the 1’s that are needed to clear the sign extension bits for positive partial products, and the

S bits represent the 1’s that are added at the least significant bit of each partial product if it

is negative.

A.1.1 Reducing the Height

Finally, the height (maximum number of items to be added in any one column) of the dot

diagram in Figure A.4 can be reduced by one by combining the S term of the top partial

product with the two leading ones of the same top partial product, which gives the final

result, shown in Figure A.5 (this is the same as Figure 2.4).
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Figure A.4: Complete 16 bit Booth 2 multiplication.
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Figure A.5: Complete 16 bit Booth 2 multiplication with height reduction.
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A.2 Signed Multiplication

The following modifications are necessary for 2’s complement, signed multiplication.

� The most significant partial product (shown at the bottom in all of the preceding

figures), which is necessary to guarantee a positive result, is not needed for signed

multiplication. All that is required is to sign extend the multiplier to fill out the

bits used in selecting the most significant partial product. For the sample 16x16

multiplier, this means that one partial product can be eliminated.

� When �Multiplicand (entries 1,2,5 and 6 from the partial product selection table) is

selected, the 17 bit section of the effected partial product is filled with a sign extended

copy of the multiplicand. This sign extension occurs before any complementing that

is necessary to obtain �Multiplicand.

� The leading 1 strings, created by assuming that all partial products were negative, are

cleared in each partial product under a slightly different condition. The leading 1’s

for a particular partial product are cleared when that partial product is positive. For

signed multiplication this occurs when the multiplicand is positive and the multiplier

select bits chooses a positive multiple, and also when the multiplicand is negative and

the multiplier select bits choose a negative multiple. A simple EXCLUSIVE-NOR

between the sign bit of the multiplicand and the high order bit of the partial product

selection bits in the multiplier generates the one to be added to clear the leading 1’s

correctly.

The complete 16x16 signed multiplier dot diagram is shown in Figure A.6
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Figure A.6: Complete signed 16 bit Booth 2 multiplication.



Appendix B

Efficient Sticky Bit Computation

B.1 Rounding

The material in the preceding chapters of this thesis have dealt with methods and algorithms

for implementing integer multiplication. Chapter 5 briefly explained the format of IEEE

double precision floating point numbers. To convert an integer multiplier into a floating

point multiplier requires 2 modifications to the multiplication hardware :

� Exponent adder - This involves a short length (12 bits or less) adder.

� Rounding logic - The rounding logic accepts the 106 bit integer product and uses

the low order 53 bits of the product to slightly modify the high order 53 bits of the

product, which then becomes the final 53 bit fraction portion of the product.

The actual rounding process is quite involved, and methods for high speed rounding can be

found in Santoro, Bewick, and Horowitz[23]. The purpose of this appendix is to discuss an

efficient method for computing the "sticky bit" which is required for correct implementation

of the IEEE round to nearest rounding mode, and is also required for computation of the

IEEE "exact" status signal.

144
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B.2 What’s a Sticky Bit?

The sticky bit is a status bit that is derived from the low order bits of the final 106 bit

product. The sticky bit is high if every bit of the low order bits of the 106 bit final product

is zero. The actual number of bits involved in the sticky computation can depend on the

rounding mode, and also can depend on whether the high order bit of the 106 bit product

is a "1". Whatever the precise definition, the value of the sticky bit is based upon some

number of low order product bits that need to be tested to determine if they are all zero.

For IEEE double precision numbers, the number of low order bits that need to be tested is

in the vicinity of 50 or so. The sticky bit, then, reduces to a large length zero detect.

B.3 Ways of Computing the Sticky

The obvious method of computing the sticky bit is with a large fan-in OR gate on the low

order bits of the product. This method has the disadvantage that the sticky bit takes a long

time to compute because the low order bits of the product must be available and then must

propagate through a large fan-in OR gate. Because the largest practical OR gate that can be

built with commonly available technology is limited to 4 or 5 inputs, the sticky bit must be

created through a number of smaller length OR gates wired in series. This places the sticky

bit squarely in the critical path of the multiplier. High speed implementations compute the

final product using a 106 bit carry propagate adder, but the low order bits of the result affect

high order bits of the result only through carries propagated into the high order bits, and the

value of the sticky bit. It seems very inefficient to actually compute the low order product

bits, determine the sticky, and then throw the low order product bits away.

To remove the sticky bit from the critical path of the multiplier, different methods may

be used. One method involves determining the number of trailing zeros in the two input

operands to the multiplier. It can be proven that the number of trailing zeros in the product

is exactly equal to the sum of the number of trailing zeros in each input operand. The

sticky bit can then be determined by checking to see if the trailing zero sum is greater than

or equal to the number of low order bits involved in the sticky computation. If true, then

the sticky bit will be a 1, otherwise it will be 0. Notice that this method doesn’t require
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the actual low order product bits, just the input operands, so the determination can occur

in parallel with the actual multiply operation, removing the sticky computation from the

critical path. The disadvantage of this method is that significant extra hardware is required.

This hardware includes 2 long length priority encoders to count the number of trailing zeros

in the input operands, a small length adder, and a small length comparator. Some hardware

is eliminated, though, in that the actual low order bits of the product are no longer needed,

so part of the carry propagate adder hardware can be eliminated.

The Santoro rounding paper describes a very clever method of sticky computation which

involves examining the low order bits of the product while it is still in a redundant form,

i.e. before the carry propagate add which computes the final product. If all of the low

order bits of the redundant form are zero, then the sticky bit must be 1, else it must be 0.

This overlaps the sticky computation with the final carry propagate add which computes

the product, removing the sticky from the critical path. Unfortunately, this method only

works for non-Booth encoded multipliers, a significant disadvantage given the results of

Chapter 5. Like the previous method, this scheme also avoids the actual computation of

the low order bits, which provides hardware savings in the final carry propagate adder.

B.4 An Improved Method

The improved sticky method described in this appendix was inspired by the Santoro sticky

scheme. While not quite as efficient as the Santoro method, the improved method also

works for Booth encoded multipliers. A small amount of extra hardware is required,

however the extra hardware requirement is significantly reduced if this method is used

in conjunction with the redundant Booth multiplication algorithm described in Chapter 2.

Like the previous methods, direct computation of the low order product bits is avoided,

providing hardware savings in the carry propagate adder.

The idea is to inject the constant -1 into the multiplier summation network which is

responsible for summing the partial products. That is the summation network computes the

value (operand 1)� (operand 2) - 1, instead of (operand 1)� (operand 2). The proper result

is then obtained by modifying the final carry propagate add so that it computes A+B+1

instead of A+B. This is easily accomplished by just forcing the carry-in to the adder to 1.
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It will be shown that a group of low order result bits will be all zeros if and only if :

� The carry-in of 1 is propagated from the lowest order bit across all low order bits

involved in the sticky bit computation AND

� A carry is not generated anywhere by the low order bits involved in the sticky

computation.

Using the terminology of Chapter 3, these two conditions can be stated in a more precise

manner. Assume that the number of low order bits involved in the sticky computation is n.

Then the sticky bit, STn is :

STn = sn�1 sn�2 : : : s1 s0 (B.1)

Where sn�1 : : : s0 are the low order product bits. The conjecture is that :

STn = pn�1
0 gn�1

0 (B.2)

Proof: By induction n, the number of bits involved in the sticky computation. For n=1,

Equation 3.1 gives s0, and with a carry-in of 1, s0 becomes :

s0 = a0 � b0 � 1

= a0 � b0

From Equation B.1 the sticky bit, ST0, is :

ST0 = s0

= a0 � b0 (B.3)

This is the same as Equation 3.6 which defines p�0. To allow the use for general p0, that

is where p0 is computed as either p�0 (EXCLUSIVE-OR) or p+0 (OR), p0 must be ANDed

with the inversion of g0 :

ST0 = a0 � b0

= p0g0
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This establishes the result for n=1. To prove for n bits, the result is assumed to be true for

n-1 bits, and then shown to be true for n bits. From Equation B.1 :

STn = sn�1 STn�1 (B.4)

From Equation 3.1:

sn�1 = an�1 � bn�1 � cn�1

sn�1 = (pn�1gn�1)� cn�1 (B.5)

Where cn�1 is the carry-in to bit n-1. Equations 3.7, 3.8, and 3.9 give cn�1, and since c0 = 1,

cn�1 can be written as

cn�1 = gn�2
0 + pn�2

0 (B.6)

Substituting Equations B.5 and B.6 into Equation B.4 gives :

STn = [(pn�1gn�1)� (gn�2
0 + pn�2

0 )] STn�1

The induction hypothesis is :

STn�1 = pn�2
0 gn�2

0

When this is substituted for STn�1 it gives :

STn = [(pn�1gn�1) � (gn�2
0 + pn�2

0 )] (pn�2
0 gn�2

0 )

= [pn�1gn�1(gn�2
0 + pn�2

0 ) + pn�1gn�1 (gn�2
0 + pn�2

0 )] (pn�2
0 gn�2

0 )

= [pn�1
0 gn�1 + (pn�1 + gn�1)(g

n�2
0 )(pn�2

0 )] (pn�2
0 gn�2

0 )

= (pn�1
0 )(gn�2

0 )(gn�1)

= (pn�1
0 )(pn�1 + gn�2

0 )(gn�1)

= pn�1
0 gn�1

0

Which completes the proof by induction.

The actual sticky bit computation can be simplified even further if the individual bit

propagates,pk are generated using the EXCLUSIVE-OR form, p�k . Then the gn�1
0 term
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can be dropped, because pn�1
0 and gn�1

0 are mutually exclusive. If a carry is propagated

across the entire group of low order bits, no carry can be generated in those bits. Then STn

becomes :

STn = pn�1
0

B.5 The -1 Constant

The -1 constant that is required to be added into the summation network is a full length

(106 bit) string of ones, assuming two’s complement representation. For Booth encoded

multipliers, there is usually a constant that must be added for sign extension reasons, which

is non-zero only beginning at about bit 53. Therefore 53 extra ones’s must be added into

the summation network. The hardware requirement for this is about the same as 53 half

adders. Since the actual summation network consists of 1000 or more carry save adders,

each of which is about twice as complex as a single half adder, the extra hardware can be

seen to be quite small. The carry generate and carry propagate signals are already required

to propagate carries from the low order product bits to the high order bits. Elimination of

the summation hardware from the low order bits of the carry propagate adder saves about

the same amount of hardware, so there is approximately no net change in the hardware

requirements. However the sticky bit has been eliminated from the critical path.

This sticky method is particularly efficient when combined with the redundant Booth

algorithm described in Chapter 2. This is because of the existence of the Compensation

Constant which already must be added into the summation network. This compensation

constant is guaranteed to have a 1 in a bit position that is about the length of the small adders

used in the hard multiple generator. This is usually in the range of 8-14 bits. Therefore

at most 8-14 extra half adders will be needed to add the -1 constant into the summation

network. Eliminating the computation of the low order summation bits saves more hardware

than this, giving a net reduction in the total hardware requirements.
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Negative Logic Adders

The purpose of this appendix is to provide a proof of Theorem 1 of Chapter 3. Although there

are other ways of proving this particular theorem, the proof illustrates the simple manner

in which many of the relationships used in Chapter 3 can be proven using mathematical

induction. It is also possible to prove the correctness of the algorithms presented in

Chapter 2, by induction on the number of "digits" in the multiplier. A digit is a single

group of bits from the multiplier which are recoded using Booth’s algorithm and then used

to select a particular partial product.

Theorem 1 Let A and B be positive logic binary numbers, each n bits long, and c0 be a

single carry bit. Let S be the n bit sum of A, B, and c0, and let cn be the carry out from the

summation. That is :

2n
� cn

sum
+ S = A

sum
+ B

sum
+ c0

Then :

2n
� cn

sum
+ S = A

sum
+ B

sum
+ c0

Proof: (by induction on n, the length of the operands):

The case n=0 gives (using equations 3.1 and 3.2):

2 � c1
sum
+ s0 = 2 � (a0 b0 + a0 c0 + b0 c0)

sum
+ (a0 � b0 � c0)

= 2 �
h�

a0 b0

�
(a0 c0)

�
b0 c0

�i sum
+

�
a0 � b0 � c0

�
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= 2 �
h�

a0 + b0

�
(a0 + c0)

�
b0 + c0

�i sum
+

�
a0 � b0 � c0

�

= 2 �
h
a0 b0 + a0 c0 + b0 c0

i sum
+

�
a0 � b0 � c0

�

= A
sum
+ B

sum
+ c0

To prove by induction on n (the length of the A and B operands), the theorem is assumed

for all operands of length n-1, and with this assumption it is proven to be true for operands

of length n. Proceeding:

2n
� cn

sum
+ S = 2n

�

h
(an�1 bn�1 + an�1 cn�1 + bn�1 cn�1)

i sum
+

n�1X
k=0

sk � 2k

= 2n
�

h
an�1 bn�1 + an�1 cn�1 + bn�1 cn�1

i sum
+ 2n�1

� sn�1
sum
+

n�2X
k=0

sk � 2k

= 2n
�

h
an�1 bn�1 + an�1 cn�1 + bn�1 cn�1

i

sum
+ 2n�1

� an�1 � bn�1 � cn�1
sum
+

n�2X
k=0

sk � 2k

= 2n
�

h
an�1 bn�1 + an�1 cn�1 + bn�1 cn�1

i

sum
+ 2n�1

�

�
an�1 � bn�1 � cn�1

� sum
+

n�2X
k=0

sk � 2k

= 2n�1
�

an�1
sum
+ bn�1

sum
+ cn�1

�
sum
+

n�2X
k=0

sk � 2k

= 2n�1
�

an�1
sum
+ bn�1

�
sum
+ 2n�1cn�1

sum
+

n�2X
k=0

sk � 2k

Now use the induction hypothesis to replace the last two terms by the sums of the first n-1

bits of A, B and a single bit carry-in c0 :

2n
� cn

sum
+ S = 2n�1

�
an�1

sum
+ bn�1

�
sum
+

n�2X
k=0

ak � 2
k sum
+

n�2X
k=0

bk � 2k sum
+ c0

=

n�1X
k=0

ak � 2k sum
+

n�1X
k=0

bk � 2k sum
+ c0

= A
sum
+ B

sum
+ c0

which completes the inductive proof.
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