FAST MULTIPLICATION:
ALGORITHMS AND IMPLEMENTATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Gary W. Bewick
February 1994

(© Copyright 1994 by Gary W. Bewick
All Rights Reserved

| certify that | have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Michael J. Flynn
(Principal Adviser)

| certify that | have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Mark A. Horowitz

| certify that | have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Constance J. Chang-Hasnain

Approvedfor the University Committee on Graduate Studies:

Abstract

This thesis investigates methods of implementing binary multiplication with the smallest
possible latency. The principle area of concentration is on multipliers with lengths of 53
bits, which makes the results suitable for | EEE-754 double precision multiplication.

Low latency demands high performance circuitry, and small physical sizeto limit prop-
agation delays. VLS| implementations are the only available means for meeting these two
requirements, but efficient algorithms are also crucial. An extension to Booth's algorithm
for multiplication (redundant Booth) has been devel oped, which represents partial products
in a partially redundant form. This redundant representation can reduce or eliminate the
time required to produce "hard" multiples (multiples that require a carry propagate addi-
tion) required by the traditional higher order Booth algorithms. This extension reduces the
area and power requirements of fully parallel implementations, but is also as fast as any
multiplication method yet reported.

In order to evaluate various multiplication algorithms, a software tool has been devel-
oped which automates the layout and optimization of parallel multiplier trees. The tool
takesinto consideration wireand asymmetricinput delays, aswell asgate delays, asthetree
is built. The tool is used to design multipliers based upon various algorithms, using both
Booth encoded, non-Booth encoded and the new extended Booth algorithms. The designs
are then compared on the basis of delay, power, and area.

For maximum speed, the designs are based upon a 0.6, BICMOS process using emitter
coupled logic (ECL). The algorithms developed in this thesis make possible 53x53 mul-
tipliers with a latency of less than 2.6 nanoseconds @ 10.5 Watts and a layout area of
13mm?. Smaller and lower power designs are also possible, as illustrated by an example
with alatency of 3.6 nanoseconds @ 5.8 W, and an areaof 8.9mm?. The conclusions based

upon ECL designs are extended where possible to other technologies (CMOS).

Crucia to the performance of multipliers are high speed carry propagate adders. A
number of high speed adder designs have been developed, and the algorithms and design
of these adders are discussed.

The implementations developed for this study indicate that traditional Booth encoded
multipliersare superior in layout area, power, and delay to non-Booth encoded multipliers.
Redundant Booth encoding further reduces the area and power requirements. Finally, only
half of the total multiplier delay was found to be due to the summation of the partial
products. The remaining delay was due to wires and carry propagate adder delays.

Acknowledgements

The work presented in this thesis would not have been possible without the assistance and
cooperation of many people and organizations. | would like to thank the people at Philips
Research Laboratories - Sunnyvale, especialy Peter Baltus and Uzi Bar-Gadda for their
assistance and support during my early years here at Stanford. |1 am also grateful to the
people at Sun Microsystems Inc., specificaly George Taylor, Mark Santoro and the entire
P200 gang. | would like to extend thanks to the members of my committee, Constance
Chang-Hasnain, Giovanni De Micheli and Mark Horowitz for their time and patience.
Mark, in particular, provided many helpful suggestions for thisthesis.

Finally 1 would like to thank my advisor, colleague, and friend Michael Flynn for
providing guidance and keeping me on track, but also allowing me the freedom to pursue
areasin my own way and at my own pace. Mike was always there when | needed someone
to bounce ideas off of, or needed support, or requested guidance. My years at Stanford
were hard work, sometimes frustrating, but | always had fun.

The work presented in this thesis was supported by NSF under contract MI1P88-22961.

Vi

Contents

Abstract v
Acknowledgements Vi
1 Introduction 1
11 Technology Options 1
111 CMOS 2

112 ECL 3

12 Technology Choice 5
1.3 Multiplication Architectureso oL 5
131 lterative 5

132 Linear ArrayS o oo 6

133 Padle Addition(Trees) L. 6

134 WalaceTrees 8

14 Architectural Choices 9

15 ThessStructure Lo 11

2 Generating Partial Products 13
21 Background 14
211 DotDiagrams 14

212 Booth’'sAlgorithm 16

213 Booth3 18

214 Booth4andHigher, . 20

22 RedundantBooth o 22

2.2.1 Booth 3 with Fully Redundant Partial Products 22

2.2.2 Booth 3 with Partially Redundant Partial Products 24
223 BoothwithBias 27
224 RedundantBooth3 32
225 RedundantBooth4 33
226 ChoosingtheAdderLength 39
23 SUMMAY L e e e 40
Addersfor Multiplication 41
3.1 Definitionsand Terminology L. 41
311 Postiveand NegativeLogic 43
3.2 DesgnExample-64bitCLAadder 44
321 GrouplLogiC 44
322 CarylLookaheadlLogic 48
323 RemarksonCLA Example 51
3.3 Design Example- 64 Bit Modified Ling Adder 51
331 GrouplLogiC 54
332 LookaheadlLogic 55
333 ProducingtheFinal Sum. 59
334 RemarksonLingExample. 60
3.4 Multiple Generation for Multipliers oL 60
341 Multiplyby3 61
3.4.2 Short Multiplesfor Multipliers 62
343 Remarkson Multiple Generation 67
35 Summary. . ..o 67
Implementing Multipliers 68
41 OVEIVIEW . . . o 68
42 DelayMode 70
4.3 Placementmethodology oL 71
431 Partia Product Generator 71
432 PlacingtheCSAs L 80

433 TreeFolding
434 Optimizations
44 \Veificationand Simulationo oL
45 Summary e e

Exploring the Design Space

51 Technology

5.2 High Performance Multiplier Structure
521 Criteriain Evaduating Multipliers
522 TestConfigurations

53 WhichAlgorithm?

53.2 PatidlyRedundantBooth
533 ImprovedBooth3o
54 ComparingtheAlgorithms. L.
55 Fabrication.
551 FabricationResultso
5.6 Comparison with Other Implementations
5.7 Improvements Lo
58 DelayandWires
59 Summary.

Conclusions

Sign Extension in Booth Multipliers

A.1 SignExtension for Unsigned Multiplication
A.11 ReducingtheHeight

A.2 Signed Multiplication Lo

Efficient Sticky Bit Computation
B.1 Rounding
B.2 What'saStickyBit?

96

97

99
107
107
109
109
117
124
125
125
129
129
132
133
134

135

138
138
140
142

144
144
145

B.3 Waysof ComputingtheSticky 145

B4 AnlimprovedMethod 146
B.5 The-1Constant 149
C NegativeLogic Adders 150
Bibliography 152

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

BiCMOS Process Parameters 98
106 Bit Carry Propagate Adder Parameters 107
Delay/Area/Power of Conventional Multipliers 110
Delay/Area/Power of 55 Bit MultipleGenerator 117
Delay/Area/Power of Redundant Booth 3 Multipliers 119
Delay/Area/Power of Redundant Booth 3 Multipliers (continued) 120
Improved Booth 3 - Partial Product BitDelays 124
MultiplierDesigns 132

Xi

List of Figures

11 BIiCMOS (BINMOS) buffer. 3
12 ECLinverter.. 4
1.3 Simpleiterativemultiplier. oL 6
14 Linear array multiplier.. 7
15 Adding 8 partial productsinparalel. 7
16 Reducing3operandsto2usingCSAsS.. 8
1.7 Reduction of 8 partial productswith4-2counters. 10
21 16bitsmplemultiplication. Lo 14
2.2 16 bitsmplemultiplicationexample. L. 15
2.3 Partia product selection logic for smple multiplication. 16
24 16bitBooth2multiply. 17
25 16bitBooth2example.o 18
2.6 16 bit Booth 2 partial product selector logic. 19
27 16bitBooth3multiply. 19
28 16bitBooth3example. Lo 20
2.9 16 bit Booth 3 partial product selector logic. 21
2.10 Booth 4 partial product selectiontable. 21
2.11 16 x 16 Booth 3 multiply with fully redundant partial products. 23
2.12 16 bit fully redundant Booth3example. 23
2.13 Computing 3M inapartialy redundant form. 25
2.14 Negating a number in partialy redundant form. 26
215 Booth3withbias. 27
2.16 Transformingthesmpleredundantform. 28

Xii

217
2.18
2.19
2.20
221
222
2.23
2.24
2.25

31
3.2
3.3
3.4
35
3.6
3.7
3.8
39
3.10
311
3.12
3.13
3.14
3.15
3.16

41
4.2
4.3
4.4
45

Summing K — Multipleand Z.o 29
Producing K + 3M in partially redundant form. 31
Producing other multiples. oL oL 32
16 x 16 redundant Booth3., 33
16 bit partialy redundant Booth 3 multiply. 34
Partial product selector for redundant Booth3. 35
ProducingK + 6M fromK +3M? 36
A different biasconstant for6M and3M.o 38
Redundant Booth 3with6 bitadders. 39
Carry lookahead additionoverview. 45
ADITCLAQIOUP. . .« o o 46
Output stagecircuit. 47
Detailed carry connectionsfor 64 bit CLA. 49
Supergroup Gand Plogic-firststage. 50
Stage2carry CirCuits. 52
Lingadderoverview. Lo 53
4bitLingadder section. 56
Group H and | connectionsfor Lingadder. 58
Handlcircuits. 59
NOR gate with 1 inverting input and 2 non-invertinginputs. 60
Times 3 multiplegenerator, 7 bitgroup. 63
Outputstage. o 64
13 bit section of redundant times3 multiple. 64
Short multiple generator - low order 7 bits. 65
Short multiple generator - highorder6 bits. 66
Operation of thelayouttool. 69
Delaymodel. 70
Multiplication block diagram. 72
Partial productsfor an 8x8 multiplier. 73
A singlepartial product. 73

4.6

4.7

4.8

4.9

4.10
411
412
4.13
4.14
4.15
4.16
417
4.18
4.19
4.20

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59
5.10
511
5.12
5.13
5.14
5.15

Dotsthat connect to bit 2 of the multiplicand. 74

Multiplexerswith the same arithmeticweight. 75
Physical placement of partial product multiplexers. 76
Alignment and misalignment of multiplexers. 77
Multiplexer placement for 8x8 multiplier. 78
Aligned partial products. o 79
Geometry foraCSA. L 81
Why half addersareneeded. oL 83
Transforming two HA'sintoasingleCSA. 84
Interchanging ahalf adder and acarry saveadder. 85
Right hand partial product multiplexers. 87
Multiplexersfoldedunder. 88
Embedding CSA withinthemultiplexers. 90
Elimination of wirecrossing. oL 91
Differential inverter. 92
|IEEE-754 double precisonformat. 97
CML/ECL Carrysaveadder. 98
CML/ECL Booth2 multiplexer. 99
Delay curvesfor CSA adder. 100
Delay for loadsunder 100fF. 101
High performance multiplier. 102
Multipliertiming. 103
Dual sdlectdriver. 104
Delay of conventiona algorithm implementations. 111
Areaof conventional algorithm implementations. 112
Power of conventiona algorithm implementations. 113
CMOSBooth2 multiplexer. 115
CMOScarysaveadder. 116
Delay of redundant Booth 3 implementations. 121
Areaof redundant Booth 3 implementations. 122

Xiv

5.17 Delay comparison of multiplicationalgorithms. 126
5.18 Areacomparison of multiplicationalgorithms.. 127
5.19 Power comparison of multiplication algorithms. 128
5.20 Floor planof multiplierchip L. 130
5.21 Photo of 53x53 multiplierchip. oo 131
6.1 Delay componentsof Booth 3-14 multiplier. 136
A.1 16 bit Booth 2 multiplication with positive partial products. 139
A.2 16 bit Booth 2 multiplication with negative partial products. 139
A.3 Negative partial productswith summed signextension. 140
A.4 Complete 16 bit Booth 2 multiplication. 141
A.5 Complete 16 bit Booth 2 multiplication with height reduction. 141
A.6 Complete signed 16 bit Booth 2 multiplication. 143

XV

Chapter 1
| ntroduction

As the performance of processors has increased, the demand for high speed arithmetic
blocks has also increased. With clock frequencies approaching 1 GHz, arithmetic blocks
must keep pace with the continued demand for more computational power. The purpose
of thisthesisis to present methods of implementing high speed binary multiplication. In
general, both the algorithms used to perform multiplication, and the actual implementation
procedures are addressed. The emphasis of this thesis is on minimizing the latency, with
the goal being the implementation of the fastest multiplication blocks possible.

1.1 Technology Options

Fast arithmetic requiresfast circuits. Fast circuitsrequire small size, to minimize the delay
effects of wires. Small sizeimpliesasingle chip implementation, to minimize wire delays,
and to make it possible to implement these fast circuits as part of a larger single chip
system to minimize input/output delays. Even for single chip implementations, a number
of choices exist as to the implementation technology and architecture. A brief review of
some of the optionsis presented in order to provide some motivation as to the choices that
were made for thisthesis.

CHAPTER 1. INTRODUCTION 2

1.11 CMOS

CMOS (Complementary Metal Oxide Semiconductor) is the primary technology in the
semiconductor industry at the present time. Most high speed microprocessors are imple-
mented using CMOS. Contemporary CMOS technology is characterized by :

Small minimum sized transistors, allowing for dense layouts, although the intercon-
nect limits the density.

Low Quiescent Power - The power consumption of conventional CMOS circuits is
largely determined by the AC power caused by the charge and discharge of capaci-
tances :

Power o« CV?f (1.1)

where f is the frequency at which a capacitance is charged and discharged. As the
circuits get faster, the frequency goes up as does the power consumption.

Relatively simple fabrication process.

Largerequired transistors - In order to drivewires quickly, largewidth transistorsare
needed, since thetimeto driveaload isgiven by :

AV
where:

At isthetimeto charge or discharge the load

C isthe capacitance associated with the load

AV istheload voltage swing

i isthe average current provided by the load driver

Large voltage swings - Typical voltage swings for contemporary CMOS are from
3.3 to 5 volts (with even smaller swings on the way). All other things being equal,
equation 1.2 says that a smaller voltage swing will be proportionally faster.

e Good noise margins.

CHAPTER 1. INTRODUCTION 3

BiCMOS

BiCMOS generally refersto CMOS-BiCMOS where bipolar transistorsare used to improve
the driving capability of CMOS logic elements (Figure 1.1). In genera this will improve

vdd

q4f dh

In —» Out

Figure 1.1: BiCMOS (BiNMOS) buffer.

the driving capability of relatively long wires by about afactor of two [2] [22]. A parallel
multiplier does indeed have some long wires, and the long wires contribute significantly
to the total delay, but the delay is not dominated by the long wires. A large number of
short wires also contribute significantly to delay. The net effect is perhaps a 20 to 30%
improvement in performance. The addition of the bipolar transistors increases the process
complexity significantly and it isnot clear that the additional complexity isworth thislevel
of improvement.

112 ECL

ECL (emitter coupled logic) [20] uses bipolar transistors exclusively to produce various
logic elements (Figure 1.2). The primary advantage of bipolar transistorsis that they have
an exponential turn-on characteristic, that isthe current through the device is exponentialy
related to the base-emitter voltage. This allows extremely small voltage swings (0.5V)
in logic elements. Referring back to Equation 1.2, this results in a proportional speed up

CHAPTER 1. INTRODUCTION 4

T

Vcs

7\

7 [\
7\

Vee

Figure 1.2: ECL inverter.

in the basic logic element. For highest speed the bipolar transistors must be kept from
saturating, which meansthat they must be used in a current switching mode. Unlike CMOS
or BICMOS, |logic elementsdissi pate power even if theelement isnot switching, resultingin
avery high DC power consumption. Thetotal power consumption isrelatively independent
of frequency, so even at extremely high frequenciesthe power consumptionwill be about the
same asthe DC power consumption. In contrast, CMOS or BiCMOS power increases with
frequency. Even at high frequencies, CMOS probably has a better speed-power product
than ECL, but this depends on the exact nature of the circuitry. A partial solution to the
high power consumption problem of ECL isto build relatively complex gates, for example
building a full adder directly rather than building it from NOR gates. Other methods of
reducing power are described in Chapter 4.

Differential ECL

Differential ECL isasimple variation on regular ECL which uses two wiresto represent a
single logic signal, with each wire having 1/2 the voltage swing of normal. To first order,
this means that differential ECL is approximately twice as fast as ECL (Equation 1.2), but

CHAPTER 1. INTRODUCTION 5

more wires are needed and more power may be required.

1.2 Technology Choice

Historically, ECL has been the choice when the highest speed was desired, it's main
drawback being high power consumption. Although CMOS has been closing the speed
gap, at high speedsit too isahigh power technology. At the present time ECL, as measured
by loaded gate delays, is somewhere between 1 and the delay of similar CMOS gates.
Comparable designs in ECL also take about the same layout area as a CMOS design,
primarily because the metal interconnect limitsthe circuit densities. Because ECL seemsto
still maintain a speed advantage, the technology used as abasisfor thisthesiswill be ECL,
supplemented with differential ECL where possible. Most conclusionswill apply primarily
to implementations using ECL, but wherever possible, the results will be generalized to
other implementation technologies, principally CMOS.

1.3 Multiplication Architectures

Chapter 2 presents partial product generation in detail, but all multiplication methods share
the same basic procedure - addition of a number of partial products. A number of different
methods can be used to add the partial products. The simple methodsare easy to implement,
but the more complex methods are needed to obtain the fastest possible speed.

1.3.1 Ilterative

The simplest method of adding aseries of partial productsisshowninFigure1.3. Itisbased
upon an adder-accumulator, along with a partial product generator and ahard wired shifter.
This is relatively sow, because adding N partial products requires N clock cycles. The
easiest clocking scheme is to make use of the system clock, if the multiplier is embedded
inalarger system. The system clock isnormally much slower than the maximum speed at
which the simple iterative multiplier can be clocked, so if the delay is to be minimized an
expensive and tricky clock multiplier is needed, or the hardware must be self-clocking.

CHAPTER 1. INTRODUCTION 6

—> Multiplicand Register

v

Partial Product Generator

—

Adder

Multiplier (Shift) Register

Right Shift

Clock —>| Product Register

Figure 1.3: Simpleiterative multiplier.

1.3.2 Linear Arrays

A faster version of the basic iterative multiplier adds more than one operand per clock cycle
by having multiple adders and partial product generators connected in series (Figure 1.4).
Thisis the equivaent of "unrolling” the ssimple iterative method. The degree to which the
loop isunrolled determinesthe number of partial productsthat can be reduced in each clock
cycle, but also increases the hardware requirements. Typically, theloop is unrolled only to
the point where the system clock matches the clocking rate of this multiplier. Alternately,
the loop can be unrolled completely, producing a completely combinatorial multiplier (a
full linear array). When contrasted with the simple iterative scheme, it will match the
system clock speed better, making the clocking much simpler. Thereis aso less overhead
associated with clock skew and register delay per partial product reduced.

1.3.3 Parallel Addition (Trees)

When a number of partial products are to be added, the adders need not be connected in
series, but instead can be connected to maximize parallelism, as shown in Figure 1.5. This
requiresno more hardwarethan alinear array, but doeshave more complex interconnections.
Thetimerequiredto add N partial productsisnow proportional tolog N, so thiscan bemuch

CHAPTER 1. INTRODUCTION

— Multiplicand Register

Partial Proquct Generator

=]

TR -
B Adder
=3
i
4
(o —
S5 : Right
25 — Partial Proquct Generator Shift
3
g
S
=
Adder
Right
I_ Shift
Partial Product Generator ﬂ zﬁi',‘“]
Adder
Clock ———————> Product Register

I

Figure 1.4: Linear array multiplier. Reduces 3 partial products per clock.

Partial Products

S A N A S S

Adder Adder Adder Adder
Adder Adder 3 adder delays
| . ;]
Adder
Product

Figure 1.5: Adding 8 partial productsin parallel.

CHAPTER 1. INTRODUCTION 8

faster for larger values of N. On the down side, the extracomplexity in the interconnection
of the adders may contribute to additional size and delay.

1.3.4 Wallace Trees

The performance of the above schemes are limited by the time to do a carry propagate
addition. Carry propagate adds are relatively slow, because of the long wires needed to
propagate carriesfrom low order bitsto high order bits. Probably the single most important
advance in improving the speed of multipliers, pioneered by Wallace [35], is the use of
carry save adders (CSAs aso known as full adders or 3-2 counters [7]), to add three or
more numbersin aredundant and carry propagate free manner. The method isillustrated in
Figure 1.6. By applying the basic three input adder in a recursive manner, any number of

Operand 0

Operand 1

|

Operand 2

= p—

b b b
C [€ C [« C

CSA CSA CSA CSA

carry sum—l

A At
L

carry sum carry sum

Output 0

Output 1

Figure 1.6: Reducing 3 operandsto 2 using CSAs.

partial products can be added and reduced to 2 numberswithout a carry propagate adder. A
single carry propagate addition isonly needed in the final step to reduce the 2 numbersto a
single, final product. The general method can be applied to trees and linear arrays alike to
improve the performance.

CHAPTER 1. INTRODUCTION 9

Binary Trees

The tree structure described by Wallace suffers from irregular interconnections and is
difficult to layout. A more regular tree structure is described by [24], [37], and [30], all
of which are based upon binary trees. A binary tree can be constructed by using a row of
4-2 counters !, which accepts 4 numbers and sums them to produce 2 numbers. Although
this improves the layout problem, there are still irregularities, an example of which is
shown in Figure 1.7. This figure shows the reduction of 8 partial productsin two levels of
4-2 counters to two numbers, which would then be reduced to a final product by a carry
propagate adder. The shifting of the partial products introduce zeros at various places in
the reduction. These zeros represent either hardware inefficiency, if the zeros are actually
added, or irregularitiesin thetreeif special countersare built to explicitly excludethe zeros
from the summation. The figure shows bitsthat jump levels (gray dots), and more counters
in the row making up the second level of counters(12), than there arein the rows making up
thefirst level of counters (9). All of these effects contribute to irregularitiesin the layout,
although it is still more regular than a Wallace tree.

1.4 Architectural Choices

With the choice of ECL as an implementation technology, many of the architectural choices
are determined. Registers are extremely expensive, both in layout area and in power
requirements. Because of the high potential speed and minimum amount of overhead
circuitry (such asregisters, clock distribution and skew), afully paral e, treeimplementation
seems to promise the highest possible speed. Implementations and comparisons will be
based upon this assumption, athough smaller tree or array structures will be noted when
appropriate.

ECL allowsthe efficientimplementation of CSAs. Twotail (gate) currentsarenecessary
per CSA. The most efficient implementations of 4-2 counters, or higher order blocks (such
as 5-5-4 or 7-3 counters) appear to offer no advantage in area or power consumption. For

14-2 adders, as used by Santoro[24] and Weinberger[37], are easily constructed from two CSAs, however
in some technol ogies a more direct method may be faster.

CHAPTER 1. INTRODUCTION 10

Row of 4-2 Counters

—
0|oje|o|o|o|®|®|®® @
Each box represents a Ole|o|o|0|0|0|0|0 O®
single 4-2 counter P P P Y P Y Y P
\ oo/e/0/0/0/0/00|° First Level of
o[o[e[e[e[e]e[e]e]® @ 4-2 Counters
oyeo|le|eeoj0o0j0/0®
o/o|0/0(0 0000
JOIOOICICICIC)R
olo|lojo|o|®|®|®| GGl G|GOG SO O
0]0/0]0|®|0|0|0|0/® 006060 Second Level of
o/o/0/0/0(000 00 OO 4-2 Counters
o|o(o/0/0/0/0/0/0 0 0|0
0000000000000 0O0GO0 Final output to
0000000000000 000 Adder

Figure 1.7: Reduction of 8 partial products with 4-2 counters.

CHAPTER 1. INTRODUCTION 11

thisreason architectures based upon CSAswill be considered exclusively. To overcomethe
wiring complexity of the direct usage of CSAs, an automated tool will be used to implement
multiplier trees. This tool is described in detail in later chapters, and is responsible for
placement, wiring, and optimization of multiplier tree structures.

1.5 Thesis Structure

The remaining portion of thisthesisis structured as follows :

e Chapter 2 - Begins the main contribution of thisthes's, by reviewing existing partial
product generation algorithms. A new class of algorithms, (Redundant Booth) which
isavariation on more conventional algorithms, is described.

e Chapter 3 - Presents the design of various carry propagate adders and multiple
generators. Carry propagate adders play a crucia role in the design of high speed
multipliers. After the partial products are reduced as far as possible in a redundant
form, acarry propagate addition is needed to produce thefinal product. Thisaddition
consumes a significant fraction of the total multiply time.

e Chapter 4 - Describes a software tool that has been developed for this thesis, which
automatically produces the layout and wiring of multiplier trees of various sizes and
algorithms. The tool also performs a number of optimizations to reduce the layout
area and increase the speed.

e Chapter 5 - Combinesthe results of Chapters 2, 3 and 4 to compare implementations
using various partial product generation algorithmson the basis of speed, power, and
layout area. All of the multipliers perform a 53 by 53 bit unsigned multiply, which
is suitable for IEEE-754 [12] double precision multiplication. Some interesting and
unique variations on conventiona algorithms are also presented. Implementations
based upon the redundant Booth algorithm are also included in the analysis. The
designs are also compared to other designs described in the literature.

e Chapter 6 - Closesthe main body of thisthesisby noting that thedelay of all piecesof a
multiplier areimportant. In particular long control wire delays, multipledistribution,

CHAPTER 1. INTRODUCTION 12

and carry propagate adder delays are at least as important in determining the overall
performance as the partial product summing delay.

Chapter 2
Generating Partial Products

Chapter 1 briefly described a number of different methods of implementing integer multi-
pliers. The methods all reduce to two basic steps — create a group of partial products, then
add them up to producethefinal product. Different ways of adding the partial productswere
mentioned, but little was said about how to generate the partial products to be summed.
This chapter presents a number of different methods for producing partial products. The
simplest partial product generator produces N partial products, where N isthe length of the
input operands. A recoding scheme introduced by Booth [5] reduces the number of partial
products by about a factor of two. Since the amount of hardware and the delay depends on
the number of partial products to be added, this may reduce the hardware cost and improve
performance. Straightforward extensions of the Booth recoding scheme can further reduce
the number of partial products, but require atime consuming N bit carry propagate addition
before any partial product generation can take place. The final sections of this chapter will
present a new variation on Booth's algorithm which reduces the number of partial products
by nearly a factor of three, but does not require an N bit carry propagate add for partial
product generation.

This chapter attemptsto stay away from implementation details, but concentrates on the
partial product generation in a hardwareindependent manner. Unsigned multiplicationonly
will be considered here, in order that that the basic methods are not obscured with small
details. Multiplication of unsigned numbersis aso important because most floating point
formats represent numbers in a sign magnitude form, completely separating the mantissa

13

CHAPTER 2. GENERATING PARTIAL PRODUCTS 14

multiplication from the sign handling. The methods are all easily extended to deal with
signed numbers, an example of which is presented in Appendix A.

2.1 Background

2.1.1 Dot Diagrams

The partial product generation processisillustrated by the use of adot diagram. Figure2.1
shows the dot diagram for the partial products of a 16x16 bit Smple Multiplication. Each

Partial Product Selection Tal —
Multiplier Bit Selection (0000000000000 0 00 « (0w
0 0 000000000000 0000 «— |0
1 Multiplicand 0o0o00000000000000 «——— |0

o000 000000000000 «———— (0
0000000000000 000 <« |0,
0000000000000 000 «—————— |0,
, (0000000000000 0 00 « °
& o0o0o0o0o0000000000 0 « of!
< (o000 00000000000 0 « o'
o0o0o0o00000000000 0 « o P
(o000 00000000000 0 « ol
0o0000000000000 00 « ofi
o000 0o0000000000 0 « e e
o000 0000000000 00 « o
o0o0oo0oo0o0000000000 0 « °
(0000000000000 0 0 « ® | msb
4 Ad
00000000000000000000000000000000
(N J

Y
Msb Product e

Figure 2.1: 16 bit smple multiplication.

dot in the diagram is a place holder for asingle bit which can be a zero or one. The partial
products are represented by a horizontal row of dots, and the selection method used in
producing each partial product is shown by the table in the upper left corner. The partial
productsare shifted to account for thediffering arithmeticweight of thebitsin themultiplier,
aligning dots of the same arithmetic weight vertically. The final product is represented by
the double length row of dots at the bottom. To further illustrate smple multiplication, an
example using real numbersis shown in Figure 2.2.

CHAPTER 2. GENERATING PARTIAL PRODUCTS 15

Multiplier = 63669,= 1111100010110101

Multiplicand (M) = 40119,=100111001011011

,_
7]
o

1001110010110111 <M1
0000000000000000 <—2—Q
1001110010110111 =M1
0000000000000000 < 0
1001110010110111 <
1001110010110111 =
0000000000000000 <
1001110010110111 =
0000000000000000 <
0000000000000000 <
0000000000000000 <
1001110010110111 =
1001110010110111 =
1001110010110111 =
1001110010110111 =
+ 1001110010110111 <

-~ 0o T TT T T o Z

ZETZTZTZTooo0oZoZZo
PRPRRPRRPRPOOORORR

Msb

10011000010000000001010101100011 =255433661} = Product

Figure 2.2: 16 bit smple multiplication example.

Roughly speaking, the number of dots (256 for Figure 2.1) in the partial product section
of thedot diagramisproportional to theamount of hardwarerequired (timemultiplexing can
reduce the hardware requirement, at the cost of ower operation [25]) to sum the partial
products and form the final product. The latency of an implementation of a particular
algorithm is also related to the height of the partia product section (i.e the maximum
number of dotsin any vertical column) of the dot diagram. This relationship can vary from
logarithmic (tree implementation where interconnect delays are insignificant) to linear
(array implementation where interconnect delays are constant) to something in between
(tree implementations where interconnect delays are significant). But independent of the
implementation, adding fewer partial productsis always better.

Finally, the logic which selects the partial products can be deduced from the partial
product selection table. For the simple multiplication agorithm, the logic consists of a
single AND gate per bit as shown in Figure 2.3. This figure shows the selection logic for
asingle partial product (asingle row of dots). Frequently thislogic can be merged directly
into whatever hardwareis being used to sum the partial products. This merging can reduce
the delay of thelogic elementsto the point where the extratime dueto the selection elements

CHAPTER 2. GENERATING PARTIAL PRODUCTS 16

Multiplicand
Msb A
r

JUOUOUIOIUIIUC

Multiplier
bit

Lsb
| | | | | |
\ \ \ \ \ \
e 6 o o o o e 6 o o o 0}
Y
Msb Partial Product Lsb

Figure 2.3: Partial product selection logic for ssimple multiplication.

can be ignored. However, in area implementation there will still be interconnect delay
due to the physical separation of the common inputs of each AND gate, and distribution of
the multiplicand to the selection el ements.

2.1.2 Booth’'s Algorithm

A generator that creates a smaller number of partial productswill alow the partial product
summation to be faster and use less hardware. The simple multiplication generator can be
extended to reduce the number of partial products by grouping the bits of the multiplier
into pairs, and selecting the partia products from the set {O,M,2M,3M }, where M is the
multiplicand. This reduces the number of partial products by half, but requires a carry
propagate add to produce the 3M multiple, before any partial products can be generated.
Instead, a method known as Modified Booth’s Algorithm [5] [17] reduces the number of
partial products by about a factor of two, without requiring a preadd to produce the partial
products. The general ideaisto do alittle more work when decoding the multiplier, such
that the multiples required come from the set {O,M,2M,4M + -M}. All of the multiples
from this set can be produced using simple shifting and complementing. The schemeworks
by changing any use of the 3M multipleinto 4M - M. Depending on the adjacent multiplier
groups, either 4M is pushed into the next most significant group (becoming M because of the
different arithmetic weight of thegroup), or -M ispushed into the next | east significant group
(becoming -4M). Figure 2.4 shows the dot diagram for a 16 x 16 multiply using the 2 bit
version of thisalgorithm (Booth 2). The multiplier is partitioned into overlapping groups of
3 bits, and each group is decoded to select asingle partia product as per the selection table.
Each partial product is shifted 2 bit positions with respect to it’s neighbors. The number of

CHAPTER 2. GENERATING PARTIAL PRODUCTS 17

0
®(Lsb
SSSeeeeeeeeee0000000 °
l1lSeceoe0e0000600006060000 |S °
AR XXX XXX XX |§<—/ °
1[Se00000000000000060 |[Sje———————— °
XXX XX E‘ﬂ o M
i1[Seeoeeo000e000000000 0 [S« o |
i1[Seeoeoe0o000e0000000000 [S« oit
S00000000000000000 S« o
oooooooooooooooo|\|§< o:
@ ¢
+ Y
0000000000000 0000000000000000000 {o
°
Partial Product Selection Tabl .
Multiplier Bits Selection S =0 if partial productls positive ® | Msb
000 +0 (top 4 entries from table) F
001 + Multiplicand S = 1 if partial product is negative 0
010 + Multiplicand (bottom 4 entries from table)
011 + 2 x Multiplicand
100 -2 X Multiplicand
101 - Multiplicand
110 - Multiplicand

111 -0

Figure 2.4: 16 bit Booth 2 multiply.

partial products has been reduced from 16 to 9. In genera the there will be [ﬁzzJ partia
products, where n is the operand length. The various required multiples can be obtained
by a simple shift of the multiplicand (these are referred to as easy multiples). Negative
multiples, in two’'s complement form, can be obtained using a bit by bit complement of the
corresponding positive multiple, with a 1 added in at the least significant position of the
partial product (the S bits along theright side of the partial products). An example multiply
is shown in Figure 2.5. In this case Booth's agorithm has reduced the total number of
dots from 256 to 177 (this includes sign extension and constants — see Appendix A for
a discussion of sign extension). This reduction in dot count is not a complete saving —
the partial product selection logic is more complex (Figure 2.6). Depending on actual
implementation details, the extra cost and delay due to the more complex partial product
selection logic may overwhelm the savings due to the reduction in the number of dots [24]
(more on thisin Chapter 5).

CHAPTER 2. GENERATING PARTIAL PRODUCTS 18

Multiplier = 63669, = 1111100010110101
Multiplicand (M) = 40119, = 10011100101101

100010011100101101114—“‘—{ 1% Lsb

110100111001011011 1<

1010110001101001000<—M{ M
1010110001101001000< { f
1101001110010110111<1 ™ { >:D
1001100011010010001<0 M { of |
1011111111111111111+" 0 {1 r

011111111111111111" 0 { !
1 1./ Msb

+ 1001110010110111< ™ {8

10011000010000000001010101100011

Figure 2.5: 16 bit Booth 2 example.

2.1.3 Booth 3

Actualy, Booth's algorithm can produce shift amounts between adjacent partial products of
greater than 2 [17], with a corresponding reduction in the height and number of dotsin the
dot diagram. A 3 bit Booth (Booth 3) dot diagram is shown in Figure 2.7, and an example
isshown in Figure 2.8. Each partial product could be from the set {+0, £M, +2M, +3M,
+4M }. All multiples with the exception of 3M are easily obtained by simple shifting and
complementing of the multiplicand. The number of dots, constants, and sign bits to be
added is now 126 (for the 16 x 16 example) and the height of the partial product section is
now 6.

Generation of themultiple 3M (referred to asahard multiple, sinceit cannot be obtained
via simple shifting and complementing of the multiplicand) generally requires some kind
of carry propagate adder to produce. This carry propagate adder may increase the latency,
mainly duetothelongwiresthat arerequired for propagating carriesfromthelesssignificant
to more significant bits. Sometimes the generation of this multiple can be overlapped with
an operation which sets up the multiply (for example the fetching of the multiplier).

Another drawback to this algorithm is the complexity of the partial product selection

CHAPTER 2. GENERATING PARTIAL PRODUCTS

Multiplicand
Msb A

Lsb

SelectM |

Select M

12 more
And/Or/Exclusive-
Or blocks

’
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Partial Product

Figure 2.6: 16 bit Booth 2 partial product selector logic.

SSSSeeeeeeeeeeecceceee
11Seeeeeeeeeece0oceocoococoe |s)
11Seeee0000060600000000 |sje———
RO | S|
1[Seeeeeo0e0e0c0o0000000000 | S|
(0000000000000 000

o|\ |Si=

+

Partial Product Selection Table
Multiplier Bits Selection Multiplier Bits Selection
0000 +0 1000 -4 x Multiplicand
0001 + Multiplicand 1001 -3 x Multiplicand (Sle?t%gn%agigcle %rfoglécl:é)is positive
0010 + Multiplicand 1010 -3 x Multiplicand
0011 +2 X Mult?pl?can 1011 2% Mult?pl?cand (Sri;h%-E;rfgtisﬁljgrg?g%hiss) negative
0100 +2 x Multiplican 1100 -2 x Multiplicand
0101 +3 x Multiplican 1101 - Multiplicand
0110 +3 x Multiplican 1110 - Multiplicand
0111 +4 x Multiplican, 1111 -0

Figure 2.7: 16 bit Booth 3 multiply.

19

Multiplier
Group

,_
1)
o

Il B = Bl =i

Msb

ccleceeeeeeeeeeee e oo

CHAPTER 2. GENERATING PARTIAL PRODUCTS 20

Multiplier = 63669, =1111100010110101

Multiplicand (M) = 40119, =1001110010110111
3 x Multiplicand (3v1) = 120357, = 1110101100010010

0
1)
0111100010100111011010+—3—< o |*
1 1
0
110110110001101001000= M 1 M
l 1 u
0 |
111011101011000100101« +am 1|t
0 0 > L
0
110011000110100100011= -aM 0 :
1 1 e
1 r
10111111111111111111= -0 1
1 1
1 b
+ 10011100101101110+« M i
0

10011000010000000001010101100011

Figure 2.8: 16 bit Booth 3 example.

logic, an example of which is shown in Figure 2.9, along with the extra wiring needed for
routing the 3M multiple.

2.1.4 Booth 4 and Higher

A further reduction in the number and height in the dot diagram can be made, but the
number of hard multiplesrequired goes up exponentially with the amount of reduction. For
example the Booth 4 algorithm (Figure 2.10) requires the generation of the multiples {+0,
+M, +£2M, £3M, +£4M,+5M,+6M,+7M,+8M}. The hard multiples are 3M (6M can be
obtained by shifting 3M), 5M and 7M. The formation of the multiples can take place in
parallel, so the extra cost mainly involves the adders for producing the multiples, larger
partial product selection multiplexers, and the additional wires that are needed to route the
various multiples around.

CHAPTER 2. GENERATING PARTIAL PRODUCTS

7 Multiplicand Multiplicand Al
Bit k Bit k-1 .
3 x Multiplicand Multiplicand >
Bit k Bit k-2 :j
SelectM
Select 3 <j
Select 41 C
........ |
. — {
10f18
multiplexer blocks

Bits of Multiplicand and
3 x Multiplicand
A

e /i

~Lsb

S

<

Booth Decoder

=

Bit k of Partial Product

Figure 2.9: 16 bit Booth 3 partial product selector logic.

21

Multiplier
> Group

Partial Product Selection Table

Multiplier Bits Selection Multiplier Bits Selection Multiplier Bits Selection Multiplier Bits Selection
00000 +0 01000 +4 x Multiplicand 10000 -8 x Multiplicand| 11000 -4 x Multiplicand
00001 + Multiplicand 01001 +5 x Multiplicand 10001 -7 x Multiplicand| 11001 -3 x Multiplicand
00010 + Multiplicand 01010 +5 x Multiplicand 10010 -7 x Multiplicand| 11010 -3 x Multiplicand
00011 01011 +6 x Multiplicand 10011 -6 x Multiplicand| 11011 -2 X Multiplicand
00100 01100 +6 x Multiplicand 10100 -6 x Multiplicand| 11100 -2 X Multiplicand
00101 01101 +7 x Multiplicand 10101 -5 x Multiplicand| 11101 - Multiplicand
00110 01110 +7 x Multiplicand 10110 -5 x Multiplicand| 11110 - Multiplicand
00111 01111 +8 x Multiplicand 10111 -4 x Multiplicand| 11111 -0

Figure 2.10: Booth 4 partial product selection table.

CHAPTER 2. GENERATING PARTIAL PRODUCTS 22

2.2 Redundant Booth

This section presents a new variation on the Booth 3 agorithm, which eliminates much
of the delay and part of the hardware associated with the hard multiple generation, yet
produces a dot diagram which can be made to approach that of the conventional Booth 3
algorithm. To motivate thisvariation asimilar, but dightly ssimpler isexplained. Improving
the hardware efficiency of this method produces the new variation. Methods of further
generalizing to aBooth 4 agorithm are then discussed.

2.2.1 Booth 3 with Fully Redundant Partial Products

The time consuming carry propagate addition that is required to generate the "hard multi-
ples' for the higher Booth algorithms can be eliminated by representing the partial products
in afully redundant form. This method isillustrated by examining the Booth 3 algorithm,
since it requires the fewest multiples. A fully redundant form represents an n bit number
by two n — 1 bit numberswhose sum equals the number it is desired to represent (there are
other possible redundant forms. See [30]). For example the decimal number 14568 can be
represented in redundant form as the pair (14568,0), or (14567,1), etc. Using this repre-
sentation, it istrivial to generate the 3M multiple required by the Booth 3 algorithm, since
3M = 2M + 1M, and 2M and 1M are easy multiples. The dot diagram for a 16 bit Booth
3 multiply using this redundant form for the partial products is shown in Figure 2.11 (an
example appearsin Figure 2.12). The dot diagram is the same as that of the conventional
Booth 3 dot diagram, but each of the partial productsistwice as high, giving roughly twice
the number of dots and twice the height. Negative multiples (in 2's complement form) are
obtained by the same method as the previous Booth al gorithms—bit by bit complementation
of the corresponding positive multiplewith a1 added at thelsb. Since every partial product
now consists of two numbers, two 1s are added at the Isb to compl ete the 2’'s complement
negation. These two 1s can be preadded into a single 1 which is shifted to the left one
position.

Although this algorithm isnot particularly attractive, due to the doubling of the number
of dots in each partia product, it suggests that a partially redundant representation of the
partial products might lead to a more efficient variant.

CHAPTER 2. GENERATING PARTIAL PRODUCTS 23

,_
@«
=3

SSSS0000000000006060000OF0
00000000000000000
11S00000000000006000060 |S "
_ 00000000000000000 "
1IS10000.1I00001l0001I000| S |
0000000000000000 0« t
1 L§oooooooo¢nooooooooo| S {
0000000000000 00 0 0« p
1S0eeeeeee ooooooo| S \ !
0000000000000 00 0 0« i
(o o000 0000000000o0f s { f

Msb

ccjeeeeeeeeeeeeee e e

Figure 2.11: 16 x 16 Booth 3 multiply with fully redundant partial products.

Multiplier = 63669, = 1111100010110101Multiplicand (M) = 40119 = 0100111001011011

0000000000000000¢

3M =120357,= 10011100101101110 4M =160476,= 1001110010110111
01001110010110111 1001110010110111(

J

0111001100011010010001
101100011010010007
1
110010110001101001000
111111111111111217
1

am Lsb

111010011100101101110
01001110010110111™
0

+3M

110001100011010010001
01100011010010001~
1

-4M

-0~ —OT T~ —cC Z

10011111111111111111
111111111111112111°
1

+ 10011100101101110< oM

.

Msb

OORRRRLRRPOOORORRORORO
v

10011000010000000001010101100011

Figure 2.12: 16 bit fully redundant Booth 3 example.

CHAPTER 2. GENERATING PARTIAL PRODUCTS 24

2.2.2 Booth 3with Partially Redundant Partial Products

The conventional Booth 3 algorithm assumes that the 3M multiple is available in non-
redundant form. Before the partia products can be summed, a time consuming carry
propagate addition is needed to produce this multiple. The Booth 3 agorithm with fully
redundant partial products avoids the carry propagate addition, but has the equivalent of
twice the number of partial productsto sum. The new scheme triesto combine the smaller
dot diagram of the conventional Booth 3 agorithm, with the ease of the hard multiple
generation of the fully redundant Booth 3 algorithm.

The idea is to form the 3M multiple in a partially redundant form by using a series
of small length adders, with no carry propagation between the adders (Figure 2.13). If
the adders are of sufficient length, the number of dots per partial product can approach
the number in the non-redundant representation. This reduces the number of dots needing
summation. |If the adders are small enough, carries will not be propagated across large
distances, and the small adders will be faster than a full carry propagate adder. Also, less
hardware is required due to the elimination of the logic which propagates carries between
the small adders.

A difficulty with the partially redundant representation shown in Figure 2.13 isthat neg-
ative partial products do not preserve the proper redundant form. To illustrate the problem,
thetop of Figure 2.14 showsanumber in the proposed redundant form. The negative (two's
complement) can be formed by treating the redundant number as two separate numbersand
forming the negative of each in the conventional manner by complementing and adding a
1 at the least significant bit. If this procedure is done, then the large gaps of zeros in the
positive multiple become large gaps of onesin the negative multiple (the bottom of Figure
2.14). Inthe worst case (all partial products negative), summing the partially redundant
partial products requires as much hardware as representing them in the fully redundant
form. 1t would have been better to just stick with the fully redundant formin thefirst place,
rather than require small addersto make the partially redundant form. The problem thenis
to find a partially redundant representation which has the same form for both positive and
negative multiples, and allows easy generation of the negative multiple from the positive
multiple (or vice versa). The smple form used in Figure 2.13 cannot meet both of these

CHAPTER 2. GENERATING PARTIAL PRODUCTS

Fully redundant form

0 000000000000 0 (0 «—2M aM
0 0000000000000 06 <« \V

L
0

Carry > Carry > Carry > Carry >

XORXxxxxx
@- @- @- @-

Partially redundant form

Figure 2.13: Computing 3M in a partially redundant form.

CHAPTER 2. GENERATING PARTIAL PRODUCTS

26

(BN BN BN AN)

@-
1 o000 o0 000 O0O0COOEO O
@1 1 1 @1 1 @1 11_ 1

e

Gaps filled with 1s

Figure 2.14: Negating a number in partialy redundant form.

CHAPTER 2. GENERATING PARTIAL PRODUCTS 27

conditions simultaneously.

2.2.3 Booth with Bias

In order to produce multiples in the proper form, Booth's algorithm needs to be modified
dightly. Thismodificationisshownin Figure2.15. Each partial product has a bias constant

Compensation constant 0
/ 7 Lsb
0000 00000000000000000006000000000 °
SSSS0e00000000000000000 °
11/S0000000000000600000 |s] °
11Seeee00000000000000 |S|je—— LI
11Seee0e00000000000000 |S |- o
1Seeeeo0e0e0c00000000000 |S|= ®
|ooooooooooooooooo|\ |S = o
®| p
+ Y
000 00000000000000000000O0C0OCBOCBOCOCROCDOOCGD o i
Y e
° r
Partial Product Selection Table []
Multiplier Bits Selection Multiplier Bits Selection [J
0000 K+0 1000 K-4 x Multiplicand ® | vsb
0001 K+ Multiplicand 1001 |K-3 x Multiplicand 0
0010 K+ Multiplicand 1010 K-3 x Multiplicand 0
0011 K+2 x Multiplican 1011 K-2 x Multiplicand
0100 K+2 x Multiplican 1100 K-2 x Multiplicand
0101 K+3 x Multiplican 1101 K- Multiplicand
0110 K+3 x Multiplican 1110 K- Multiplicand
0111 |K+4 x Multiplican 1111 K-0

Figure 2.15: Booth 3 with bias.

added to it before being summed to form thefinal product. The biasconstant (K) isthe same
for both positive and negative multiples® of a single partial product, but different partial
products can have different bias constants. The only restrictionisthat K, for agiven partial
product, cannot depend on the particular multiple selected for use in producing the partial
product. With this assumption, the constants for each partial product can be added (at
design time!) and the negative of this sum added to the partial products (the Compensation
constant). The net result is that zero has been added to the partial products, so the final
product is unchanged.

1the entries from the right side of the table in Figure 2.15 will continue to be considered as negative
multiples

CHAPTER 2. GENERATING PARTIAL PRODUCTS 28

The value of the bias constant K is chosen in such amanner that the creation of negative
partial productsisasimple operation, asit isfor the conventional Booth algorithms. Tofind
an appropriate value for this constant, consider amultiplein the partially redundant form of
Figure 2.13 and choose avalue for K such that thereisa 1 in the positionswherea"C" dot
appears and zero elsewhere, as shown in the top part of Figure 2.16. The topmost circled

(Looooooooooooooooo Multiple
@< o- -
0 0OOO10O0O0O\1/OOO1O0O0OTUO0OT8G0T90O0 }k

Combine these
bits by summing

@ OR® =@ = @ EXOR (8

@L‘CO.OBO.C&‘.QQQ‘OQ..Q K + Multiple
v v @

Figure 2.16: Transforming the simple redundant form.

section enclosing 3 vertical items (two dots and the constant 1) can be summed as per the
middle part of the figure, producing the dots"X" and "Y". The three items so summed can
be replaced by the equivalent two dots, shown in the bottom part of the figure, to produce
a redundant form for the sum of K and the multiple. This is very similar to the smple

CHAPTER 2. GENERATING PARTIAL PRODUCTS 29

redundant form described earlier, in that there are large gaps of zeros in the multiple. The
key advantage of thisformisthat the value for K — Multiple can be obtained very simply
from the value of K + Multiple.

Figure 2.17 shows the sum of K + Multiple with a value Z which is formed by the bit
by bit complement of the non-zero portions of K + Multiple and the constant 1 in the Isb.
When these two values are summed together, the result is 2K (this assumes proper sign

ﬂooo&ooo&oooooyooooh K + Multiple
(V] [V

v
+
__________________ (the bit by bit complement of
.|. LAAJLA BRI E R BILE RN I the non-blank components of
(V] (V] O 1 K+Multiple, with a 1 added in
at the Isb)
1 1 1
AN J
Y
2K

Figure 2.17: Summing K — Multiple and Z.

extension to however many bitsare desired). That is:

K + Multiple+Z = 2K
Z = K- Multiple

In short, K — Multiple can be obtained from K 4+ Multiple by complementing all of the
non-blank bits of K + Multiple and adding 1. Thisis exactly the same procedure used to
obtain the negative of a number when it is represented in its non-redundant form.

The process behind the determination of the proper value for K can be understood by
deducing the sameresult in adightly different method. First, assume that apartial product,
PP, isto be represented in a partially redundant form using the numbers X and Y, with Y
having mostly zeroesin it’s binary representation. Let PP be equal to the sum of the three
numbers A,B, and the bias constant K. That is:

PP=A+B+K

CHAPTER 2. GENERATING PARTIAL PRODUCTS 30

The partially redundant form can be written in binary format as :

PP = A+B+K

= X+Y
B Xnot Xnozeoo Xieoo Xieoo X1 Xo +
0 0.. Y0..Y0.. 0 0

The desired behaviour is to be able to "negate” the partial product P, by complementing all
the bitsof X and the non-zero components of Y, and then adding 1. Itisnot really negation,
because the bias constant K, must be the same in both the positive and "negative" forms.
That is:

"negative" of PP = —(A+B)+K (2.1)
B Xn1 Xnezoor Xeeoo X0 Xy Xo 41+
0 0--- YO--- YO0--- 0 O
Now if PPisactually negated in 2's complement form it gives:
—PP = —(A+B+K) (2.2)
B Xoc1 Xnezooo Xieoo Xiooo X1 Xo +1+4
1 1--- Yelooo Yil--- 1 1 +1

So al thelong stringsof 0'sin 'Y have becomelong stringsof 1's, as mentioned previoudly.
The undesirable strings of 1's can be pulled out and assembled into a separate constant, and
the "negative" of PP can be substituted :

Xno1 Xpg-oo Xgeoo X X: Xo +1+
—PP = 0 0-- YO--- Y0--- 0 0 +
1 1.- o1--- oL--- 1 1 +1

B "negative" of PP +
a 1 1.--- 01--- Ol--- 1 1 +1

Finally, substituting Equations 2.2 and 2.1 and ssimplifying:

~(A+B+K) = —(A+B)+K+

CHAPTER 2. GENERATING PARTIAL PRODUCTS 31

1 1.-- 01--- 01--- 1 1 +1

-2K = 11..- 01--- 01--- 1 1 +1

2K = 0 0--- 10--- 10--- 0 O
which again gives the same value for K. The partially redundant form described above
satisfies the two conditions presented earlier, that isit has the same representation for both

positive and negative multiples, and aso it iseasy to generate the negative giventhe positive
form.

Producing the multiples

Figure 2.18 shows in detail how the biased multiple K + 3M is produced from M and 2M
using 4 bit adders and some simple logic gates. The simple logic gates will not increase

0000000000000 00 - 2M M
0 0000000000000 0 «—— v

4 4 4 4 4 4 4 4

Cca 4 bit adder ¢ 4 bit adder ca

4 bit adder,

[& 4 bit adder

v [V (Y4 K'=000010001000100000

xR xoxxxxxxxxx } K + 3M, where

Figure 2.18: Producing K 4+ 3M in partially redundant form.

the time needed to produce the biased multiple if the carry-out and the least significant bit

CHAPTER 2. GENERATING PARTIAL PRODUCTS 32

from the small adder are available early. Thisisusually easy to assure. The other required
biased multiples are produced by s mple shifting and inverting of the multiplicand as shown
in Figure 2.19. Inthisfigure the bits of the multiplicand (M) are numbered (Isb = 0) so that

e ®® @ Q0066000 O 0O <« VM

looo0oo0 10 00010000 0fe— K

0001000 0 0fe—K+

B
o
o
o
=
o
o
o
[

[o
o
o

0 0P D2 ® 2P0 O0OO©0O0O000 0 O «——K+M
®] o] o]

0 P2 ®2 2P0 0000000000 0|«—K+2M
2] o] o]

po®®®d0000 5]
2] 9] 9]

Figure 2.19: Producing other multiples.

the source of each bit in each multiple can be easily seen.

2.2.4 Redundant Booth 3

Combining the partially redundant representation for the multiples with the biased Booth
3 agorithm provides a workable redundant Booth 3 algorithm. The dot diagram for the
complete redundant Booth 3 agorithmis shown in Figure 2.20 for a 16 x 16 multiply. The
compensation constant has been computed given the size of the adders used to compute the
K + 3M multiple (4 bitsin this case). There are places where more than a single constant
is to be added (on the left hand diagonal). These constants could be merged into a single
constant to save hardware. Ignoring this merging, the number of dots, constants and sign
bitsin the dot diagramis 155, which is dightly more than that for the non-redundant Booth

CHAPTER 2. GENERATING PARTIAL PRODUCTS 33

Compensation constant

re

[11111101100100000000010011100000 0
[SSSscoeoococooceoeceoesee (@] Lso

o] o] o] s °

11{Scloeooceoecooeceeese °

I) B s] e
l11[Se/eooececooecoeoeceseee QUM
o] o] o] s e
l11[Sceooceooceoeceoceeo o
_ o] o] o] B o i
1[Se[eoeoceoooceooeceee oo e p
o] o] o] h {'
|ooooooooooooooooo|\ of i
.e
.I’

+ °

0000000000000 0000000000000000000 °
@ | Msb

0

0

Figure 2.20: 16 x 16 redundant Booth 3.

3 algorithm (previously given as 126). The height 2 is 7, which is one more than that for
the Booth 3 algorithm. Each of these measures are |ess than that for the Booth 2 algorithm
(although the cost of the small addersis not reflected in this count).

A detailed example for the redundant Booth 3 agorithm is shown in Figure 2.21. This
example uses 4 bit adders as per Figure 2.18 to produce the multiple K + 3M. All of the
multiples are shown in detail at the top of the figure.

The partial product selectors can be built out of a single multiplexer block, as shown in
Figure 2.22. Thisfigure shows how a single partial product is built out of the multiplicand
and K + 3M generated by logic in Figure 2.18.

2.25 Redundant Booth 4

At this point, a possible question is " Can this scheme be adapted to the Booth 4 algorithm™.
Theanswer isyes, butitisnot particularly efficient and probably isnot viable. Thedifficulty
isoutlined in Figure 2.23 and is concerned with the biased multiples 3M and 6M. The left
side of thefigure showsthe format of K 4+ 3M. The problem ariseswhen the biased multiple

2The diagram indicates a single column (20) with height 8, but this can be reduced to 7 by manipulation
of the S bitsand the compensation constant.

CHAPTER 2. GENERATING PARTIAL PRODUCTS

Multiplier = 63669, = 1111100010110101 Multiplicand (M) = 40119,=0100111001011011
K =000010001000100000

Multiples (in redundant form)
K+0 = 000010001000100000

0 0 O

K+M = 001011111010010111 K+2M =010001101101001110
0o 0 1 1 0 1

K+3M = 011011010000000101 K+4M =100101000011111100
1 1 1 1 1 0

Compensation constant

11111101100100000000010011100000 /

0
0111100100101111111010 1Y Lso
0 0 o0 =<0
L wm
110110100000101101000 _ 0
1 1 0 — 1|
|
111011011010000000101 o of t
1 01 1 0 1 i
s
110011010111100000011 s of |
o o0 1 1 ol
1 |
10111101110111011111 - 1] e
101 1 1 1] s
1
1/
+ 10011100101101110 - o
0

10011000010000000001010101100011

Figure 2.21: 16 bit partially redundant Booth 3 multiply.

Created by a single

row of small adder:

Shared by all partial
products

One row of
muxes pel
partial produc

17 16 15 0
[0 @ @ o]
D o]

Mux Block

| Select 3M|
Select M

Select 2M
Select 4M

Invert

Out

Note : All unwired D,2D, or 4D
inputs on MuxBlocks should
be tied to 0

Figure 2.22: Partia product selector for redundant Booth 3.

K +3M

Multiplicand

Selects from Booth decoder.
All corresponding select
and invert inputs are

wired together

Partial Product

S10Ndodd 1VI1dvd ONILYHINTD ¢ H31dVHO

Ge

CHAPTER 2. GENERATING PARTIAL PRODUCTS 36

- -

1 1 lo-—
K

oﬁccco|oooo|oooo|oooo|o }3M

0%00003|0000}9|000&9|0000|0 K + 3M
v v

&

Left Shift

%ooooxo|ooooxc|ooo&|oooo|oo
o o o 2K+ 6M #K + 6M

Figure 2.23: ProducingK 4+ 6M fromK + 3M ?

CHAPTER 2. GENERATING PARTIAL PRODUCTS 37

K 4+ 6M isrequired. The normal (unbiased) Booth algorithms obtain 6M by a single left
shift of 3M. If thisis tried using the partially redundant biased representation, then the
resultisnot K + 6M, but 2K + 6M. Thisviolates one of the original premises, that the bias
constant for each partial product is independent of the multiple being selected. In addition
to this problem, the actual positions of the Y bits has shifted.

These problems can be overcome by choosing a different bias constant, asillustrated in
Figure2.24. Thebiasconstant is selected to be non-zero only in bit positions corresponding
to carries after shifting to create the 6M multiple. The three bitsin the area of the non-zero
part of K (circled in thefigure) can be summed, but the summation is not the same for 3M
(left side of the figure) as for 6M (right side of the figure). Extra signals must be routed
to the Booth multiplexers, to simplify them as much as possible (there may be many of
themif themultiply isfairly large). For example, to fully form the 3 dotslabeled " X", "Y",
and "Z" requiresthe routing of 5 signal wires. Creative use of hardware dependent circuit
design (for example creating OR gates at the inputs of the multiplexers) can reduce thisto
4, but this still means that there are more routing wires for a multiple than there are dotsin
the multiple. Of course since there are now 3 multiples that must be routed (3M, 5M, and
7M), these few extrawires may not be significant.

There are many other problems, which are inherited from the non-redundant Booth 4
algorithm. Larger multiplexers— each multiplexer must choose from 8 possibilities, twice
as many as for the Booth 3 algorithm — are required. There is also a smaller hardware
reduction in going from Booth 3 to Booth 4 then there was in going from Booth 2 to Booth
3. Optimizations are also possible for generation of the 3M multiple. These optimizations
are not possible for the 5M and 7M multiples, so the small adders that generate these
multiples must be of a smaller length (for a given delay). This means more dots in the
partial product section to be summed.

Thus a redundant Booth 4 algorithm is possible to construct, but Chapter 5 will show
that the non-redundant Booth 4 algorithm offersno performance, area, or power advantages
over the Booth 3 agorithm for reasonable (< 64 bits) length agorithms. As a result
the redundant Booth 4 algorithm is not very interesting. The hardware savings due to
the reduced number of partial products is exceeded by the cost of the adders needed to
produce the three hard multiples, the extra wires (long) needed to distribute the multiples

o%ooo(;‘\:o/eo]\@ooo\oooo\o }3|v| %ooo&oo@(gh@\)oo:&oooo\oo}6M

1 1 1 -— 1 1 1
K —— >

©0 ¢ - @EXORE® 00
o ® @ =0
+ 1@ © = ® EXOR (® AND @) + 1 © - OC0OR®
“oe ©=6O0R@ADE) eoe ©-0ORe
c@eeeveeeveeovuoecoee }K+3M (&]oooeaoo»aoo»»ooo\oo}K+6M
e @ @ @ [e

Figure 2.24: A different bias constant for 6M and 3M.

S10Ndodd 1VI1dvd ONILYHINTD ¢ H31dVHO

8¢

CHAPTER 2. GENERATING PARTIAL PRODUCTS 39

to the partial product multiplexers, and the increased complexity of the partial product
multiplexers themselves.

2.2.6 Choosing the Adder Length

By and large, the rule for choosing the length of the small adders necessary for is straight-
forward - use largest possible adder that does not increase the latency of multiply. This
will minimize the amount of hardware needed for summing the partial products. Since
the multiple generation occurs in parallel with the Booth decoding, there is little point in
reducing the adder lengths to the point where they are faster than the Booth decoder. The
exact length is dependent on the actual technology used in the implementation, and must
be determined empirically.

Certain lengths should be avoided, as illustrated in Figure 2.25. This figure assumes

[11111101101011011011101110000000 0
[SSsSeeeececeecoeceocesoeee ®]|Ls

[o] |®] s °

[11Seeeececeeececeee e °

o] [o] s T— °
[11S/eeeececeeeceeeese e QUM

o] o] s[* o
[I11Seeeececoecoececeee oo o
|o] |®] S| o |
[I1Seceeececoocoeeceoceoeee e p
|o] |®] S| o |
|ooooooooooooooooo|\ o
.e

.I’

+ °

0000000000000 0000000000000000000 °
lMsb

0

0

Figure 2.25: Redundant Booth 3 with 6 bit adders.

a redundant Booth 3 agorithm, with a carry interval of 6 bits. Note the accumulation of
dots at certain positions in the dot diagram. In particular, the column forming bit 15 of the
product isnow 8 high (vs7 for a4 bit carry interval). This accumulation can be avoided by
choosing adder lengths which are relatively prime to the shift amount between neighboring
partial products (in this case, 3). This spreads the Y bits out so that accumulation won'’t
occur in any particular column.

CHAPTER 2. GENERATING PARTIAL PRODUCTS 40

2.3 Summary

This chapter has described a new variation on conventional Booth multiplication algo-
rithms. By representing partial productsin a partially redundant form, hard multiples can
be computed without a slow, full length carry propagate addition. With such hard multiples
available, a reduction in the amount of hardware needed for summing partial productsis
then possible using the Booth 3 multiplication method. Since Booth's agorithm requires
negative partial products, the key ideain using the partially redundant representation is to
add a carefully chosen constant to each partial product, which allows the partial product to
be easily negated. A detailed evaluation of implementations using this algorithm is pre-
sented in Chapter 5, including comparisons with implementations using more conventional
algorithms,

Chapter 3
Addersfor Multiplication

Fast carry propagate adders are important to high performance multiplier design in two
ways. First, an efficient and fast adder is needed to make any "hard" multiples that
are needed in partial product generation. Second, after the partial products have been
summed in a redundant form, a carry propagate adder is needed to produce the final non-
redundant product. Chapter 5 will show that the delay of this final carry propagate sum
is a substantial portion of the total delay through the multiplier, so minimizing the adder
delay can make a significant contribution to improving the performance of the multiplier.
This chapter presents the design of several high performance adders, both general purpose
and specialized. These adders will then be used in Chapter 5 to evaluate overall multiplier
designs.

3.1 Definitions and Ter minology

The operands to be added are n bit binary numbers, A and B, with resultant binary sum
S (also n bitslong). The single bit carry-in to the summation will be denoted by ¢, and
the carry-out by c,. A,B, and S can be expanded directly in binary representation. For
example, the binary representation representation for A is:

A=Y a2 a € (0,1)
with similar expansionsfor B, and S.

41

CHAPTER 3. ADDERS FOR MULTIPLICATION 42

The following notation for various boolean operators will be used :

ab — boolean AND of ab
a+b ~— boolean OR of a,b
a®b — EXCLUSIVEOROf ab
a — boolean NOT of a
A — nz_:lzi-z" the bit by bit complement of the binary number A
k=0

To avoid ambiguity, thesymbol 1 will be used to signify actual addition of binary numbers.
The defining equations for the binary addition of A, B, and ¢y, giving sum S and ¢, will
betaken as:

S = adbdc (3.1)
Ckr1 = @by +acck + be e (3.2
k = 01....n-1

In developing the algebra of adders, the auxiliary functions p (carry propagate) and g
(carry generate) will be needed, and are defined by a modified version of equation 3.2:

Ckr1 = Ok + PxCk (3.3)

Combining equations 3.3 and 3.2 givesthe definition of g and two possible definitionsfor p

Ok = ach (3.4)
Pk = ac+ b (3.5)
= a @ by (3.6)

In general, thetwo definitionsof px areinterchangeable. Whereitisnecessary to distinguish
between the two possible p definitions (most importantly in the Ling adder), the first form
isreferred to as pt, and the second form as p?,.

CHAPTER 3. ADDERS FOR MULTIPLICATION 43

Equation 3.3 gives the carry out from a given bit position in terms of the carry-in to
that position. This equation can also be applied recursively to give ¢, 1 interms of alower
order carry. For example, applying (3.3) threetimes gives ¢y 1 intermsof ¢,_» :

Ck+1 — Ok + Pk Ok—1 + Px Pk—1 k-2 + Pk Pk—1 Pk—2 Ck—2 (3.7
This leads to two additional functions which can be defined :

g = G+PG-1+PP-1G-2+ +PP-1 - Perik (3.8)
Pc = PiP-1P—2" " Per1 Pk (3.9)

Equations 3.8 and 3.9 give the carry generate and propagate for the range of bitsfrom k to
J. These equations form the basis for the conventional carry lookahead adder [38].

3.1.1 Positive and Negative L ogic

Before presenting the design examples, a simple theorem relating positive logic adders
(wherea™1" isrepresented by ahigh voltage) and negativelogic adders(a"1" isrepresented
by alow voltage) will be stated. The proof for this theorem is presented in Appendix C.
This theorem isimportant because it allows transformation of inputs or outputsto better fit
the inverting nature of implementations of most conventional logic, and to avoid the use
of inefficient logic functions. For example, ECL can provide efficient and fast NOR/OR
gates, but NAND/AND gates are slower, larger and consume more power. Replacement of
NAND/AND gates with NOR/OR gates will produce better ECL implementations.

Theorem 1 Let A and B be positive logic binary numbers, each n bits long, and ¢, be a
single carry bit. Let Sbe the n bit sum of A, B, and ¢y, and let ¢, be the carry out from the
summation. That is:

sum

n sum sum
2"c,+S = A+B+ o

Then:

sum — — sum — sum

.. +S = A+B+5

Theorem 1 issmply stating that a positive adder is aso a negative logic adder. Or in other
words, an adder designed to function with positive logic inputs and outputs will aso be an
adder if the inputs and outputs are negative logic.

CHAPTER 3. ADDERS FOR MULTIPLICATION 44

3.2 Design Example - 64 bit CLA adder

Thefirst design exampleto be presentedisthat of aconventional 64 bit carry lookahead adder
(CLA) [38]. Figure 3.1 showsan overall block diagram of the adder. The input operands, A
and B, and the sum output, S, are assumed to be negativelogic, whilethe carry-inand carry-
out are assumed to be positivelogic. The 64 bit A and B input operands are partitioned into
16 four bit groups. Each group has Group Generate and Propagate L ogic which computes
a group carry generate (G) and a group carry propagate (P). The Carry Lookahead Logic
in the center of the figure combines the G and P signals from each group with the carry-in
signal to produce 16 group carries(ck, k = 0,4, . . ., 60) and the adder carry-out (Cs4). Each
four bit group has an Output Stage which uses the corresponding group carries to produce
a4 bit section of thefinal 64 bit sum.

3.2.1 Group Logic

The group generate logic, group propagate logic, and the final output stage for each 4
bit section can be combined into a single modular logic section. A possible gate level
implementation for a four bit group is shown in Figure 3.2. Complex or multiple gates
contained within dotted boxes represent |ogic which can be implemented with asingle ECL
tail current. The individua bit gx and pk, (k=0,1,2,3), are produced by the gates |abeled Y,
and are used to produce the group generate (G) and group propagate (P) signals, aswell as
being used internally to produce bit to bit carries. G and P for the group are produced by
the gates labeled X, according to the following equations :

G = ¢ (3.10)
= O3+ P3d2+ P3P201+ P3P2P1 %o (3.12)
P = p
= P3P2P1Po (3.12)

The outputs of individual gates are connected via a wire-OR to produce G. The output
stage is formed by gates Z and produces the sum at each bit position by a three way
EXCLUSIVE OR of & and by with the carry (c) reaching a particular bit. The carry

Carry-Out
-

B Operand (64 bits long)

%S B

MSB

A Operand (64 bits long)

N (

Group Generate and

13 Additional Groups

VA

LsB
LSB
4 4
P AN
a b
=]

MSB

Sum of A and B (64 bits long)

LSB

Figure 3.1: Carry lookahead addition overview.

of 4 bits Group Generate and Group Generate and
Propagate Logic Propagate Logic Propagate Logic
(4 bits wide) - - - (4 bits wide) (4 bits wide)
G P G P G
Group Group Group Group Group Group
Generate Propagate Generate Propagate Generate| Propagate
Y Y Y Y Y Y
GlS PlS Gl . P GO PO
c, Carry Lookahead Logic
Cl CO
Output Stages Output Stage Output Stages
(4 bits wide) | <" . . . (4 bits wide) | “™" (4 bits wide) | ™"
sum sum sum
4 4 4

Carry-In

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

174

CHAPTER 3. ADDERS FOR MULTIPLICATION 46

Figure 3.2: 4 bit CLA group.

reaching a particular bit can be related to the group carry-in (cin) by the following :

Ck = g'(‘, + p'éCin

The signa ¢, usually arrives later than the other signals, (since it comes from the global
carry lookahead logic which contains long wires), so the logic needs to be optimized to
minimizethe delay aong the ¢, path. Thisisdone by using Shannon’s Expansion Theorem
[27] [28] applied to 5 as afunction of ¢y :

S = & Dbedc

CHAPTER 3. ADDERS FOR MULTIPLICATION 47

a @ by @ (g + phcin)
= G (@ bea [df+pb|) +Tn (@@ b |d]) (313)

Being primary inputs, & and b, areavailablevery early, sothevaluea b by = a ¢ b = px
is also available fairly early. The values g§ and p§ can be produced using only locally
available signals (that is signals available within the group). Because the wires within a
group should befairly short, these signals should a so be available rather quickly (the gates
labeled W in Figure 3.2 produce these signals). The detailed circuitry for an output stage
gate which realizes equation 3.13, given & & by (the half sum) with asingle tail currentis
shown in Figure 3.3. This gate is optimized in such away that the carry to output delay is

P— Vce

> Sum
0 30 .
Y
Carry[> %P %
|

Vbb2
U
GDﬂ) ﬁ) (B—G) (W
py 1]
Vbb3
Half-Sum

Vee

Figure 3.3: Output stage circuit. For proper operation, G and P must not both be high.

much smaller than the delay from the other inputs of the gate.

CHAPTER 3. ADDERS FOR MULTIPLICATION 48

3.2.2 Carry Lookahead Logic

The carry lookahead logic which produces the individual group carries is illustrated in
Figure 3.4. The carries are produced in two stages. Since the group G and P signals are
positive logic coming from the groups, the first stage is set up in a product of sums manner
(i.e. thefirst stage is OR-AND-INVERT logic, which can be efficiently implemented in
ECL using NOR gates and wire-OR). The first stage of the carry lookahead logic produces
supergroup G and P for 1 to 4 groups according to the following :

3 Q|

Gl = (P.+G) (G + Gy

o

P§ = Pi+Po
&R = (P+G) (Go+ P+ Gy) (G, + G+ Gy)
3 = P+Pi+Po

= (P3+G3) (Gs+ P+ Gy) (Gz3+ Gz + P+ Gy) (Gs+ G+ Gy + Gp)
= Ps+ P+ P+ P

3 Q)

A gate level implementation of the supergroup G and P using NOR gates and wire-OR is
shown in Figure 3.5. Note that some gates have multiple outputs. These can usualy be
obtained by adding multiple emitter followers at the outputs, or by duplicating the gates
in question. The second stage of the carry lookahead logic uses the supergroup G and P
produced in the first stage, along with the carry-in, to make the final group carries, which
are then distributed to the individual group output stages. This process is similar to the
canonic addition described in [36]. The equations relating the super group G and P signals
to thefinal carriesare:

G = C

Four Bit Slices (16)

A v
r
Cn
G G G P G G G G G G G G G G G
‘Qs R \QA R \Qa R \Q; R: \QJ R \ao R |G |B |G |R G|k &R |G|R &R G|R &R |G|R &R
G R G R G R G R GG R G R G R G R G R G R G R G R G R G R G R G R
4 Group Lookahea}l 4 Group Lookahea}l 4 Group Lookaheajl 4 Group Lookahea}l
G % GF GR G&F G R &GF GR G&GF G ® GF GR G&F G % G F GR G&GF
g |jEE @w @R _ sw g §F o aF |jEE &® &R & mels B G[R [&"
G P||G P||[C P||C P G P||G P||CG P||G P G P||[G P||CG P||G P G P||G P|[C P||G B
G &{ ©f| & G| G &{ & e o o & eH __TH __—TH T
E% ﬁ), ﬁ), ED E{), _po E%, ﬁ) ﬁ), FB* f{), E% [Carry} Carry) Carry] (Carry)
_ _ _ _ _ _ _ _ ircui ircuiy ircuiy ircuiy
o ST = o 2 > o Carrya | | (Carryd cy cy cy cy
B, B B P, PH = = Pl ircuiy ircuif
— — —~ — Cy Cy
G) G Gy G, Carry Carry’
B BH BH B y ircui ircuiy y ;;
Cy Cy Cy Cy
(Carry4 (Carry4
ircuiy ircuiy
y " Cy
Cs2 Cag Caa Coo C36 Cs2 G Co4 Cxo Cis Cip Cg Cy

<’

Y
Carries to Slices (16)

Figure 3.4: Detailed carry connectionsfor 64 bit CLA.

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

617

CHAPTER 3. ADDERS FOR MULTIPLICATION 50

G,

U

G,

J

Jwo
N
{J-o
e
Jou
Ade

su]
okl
s,
o Ral
o-ULG
okl

@

Figure 3.5: Supergroup G and P logic - first stage.

¢ = GY+PC
e = Gy+PsC
c, = Gi+PiC
cs = Gy+PC

e = Gll+PllGZ+P11P7Gg+P§1
G = Gp+ PGy + PPy Gi+ PPy PiGy+ PPy PP C

CHAPTER 3. ADDERS FOR MULTIPLICATION 51

G = G+ PEGH + PP G} + PP P G) + PEPLFRC
= G%3+P136;1+P13P;161+P13P;1PGg+P13P;1 PiFiC
G = G+ PECH 1 PEPY G+ PEPEFGE + PEPYFRC

All of the above functions can be implemented by 4 different INVERT-AND-OR blocks,
which areshown in Figure 3.6. Because C isconnected with awire-OR to P3, the maximum
number of inputs on any gate is 4, and the maximum number of wire-OR outputsis 5.

3.2.3 Remarkson CLA Example

The 64 bit CLA design presented above combineselementsof conventional carry lookahead
adders, canonic adders, and conditional sum adders[29]. In addition circuit configurations
are chosen to specifically fit circuit tricks that are available with ECL. The result is a
reasonably modular, high performance adder. Along the critical path, there are 4 NOR
and 1 EXCLUSIVE-OR equivalent stages of gates. The next design example will further
increase the performance by reducing the number of logic stages along the critical path,
while retaining the same basic modular structure.

3.3 Design Example - 64 Bit Modified Ling Adder

A faster adder can be designed by using a method developed by H. Ling [16]. Inthe Ling
scheme, the group carry generate and propagate (G and P) are replaced by similar functions
(called H and | respectively) which can be produced in fewer stages than the group G and
P. These signals are distributed around in a manner which is almost identical to that of the
group G and P. When areal G or P is needed, it is recreated using H and | plus asingle
signal which islocally available. The algebrabehind this substitution will be presented as
needed in the discussion that follows.

An overview of a 64 bit modified Ling adder is shown in Figure 3.7. The structure
is very similar to that of the CLA described above, but there are two additional signals
which connect adjacent blocks (p*; and p*,(dot)). There are also minor differences in

CHAPTER 3. ADDERS FOR MULTIPLICATION

G P C G P G, B G B G R
y y ? 00 g J
|
% v00T
Cy Cy
[Carryl Circu@ [Carry4 Circu@

G P G P G P
U%@ U? UE%
Cy

[CarryZ Circu@ [Carry3 Circu@

Figure 3.6: Stage 2 carry circuits.

IﬁSB B Operand (64 bits long) LsB
MsB A Operand (64 bits long) Lse
4 \ / 4 4 \ / 4 4 4
a b 13 Additional Groups a b a b
Pdoty [Group H and\ p (dothe— of 4 bits <« P(dot) [Group H and) p (dot P(doy (Group Hand) p (dothe—oQ
3 I Logic -1 3 | Logic -1 3 | Logic -1
53 (4 bits wide) - - - |_33 (4 bits wide) 53 (4 bits wide)
H T H T H T
Group H Group | Group H Group | Group H Group |
Y Y Y Y Y Y
Hy T15 H, . T1 H, To
iy Carry Lookahead Logic aryn
hlS hl hO

]

Output Stagey P Output Stagey P
(4 bits wide) (4 bits wide)
h,, n " " h

sum sum N

Output Stage§ P 0
(4 bits wide)
h e

sum)

4 4

4

MsB Sum of A and B (64 bits long)

LSB

Figure 3.7: Ling adder overview.

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

€g

CHAPTER 3. ADDERS FOR MULTIPLICATION 54

the group and group lookahead logic. The major difference between the Ling scheme and
the conventional CLA is that the group H signal (which replaces the group G signal from
the CLA) is available one stage earlier than the corresponding G signal. Also the group
propagate signal (P) is replaced with a signal that performs an equivalent function in the
Ling method (I).

3.3.1 Group Logic
To understand the operation of the Ling adder, consider the equation for the group G signal
in the conventional 4 bit CLA group (Figure 3.2).

G = ¢

= O3+ P302+ P3P201 + P3P2P1 9o (3.14)

Now consider gs. From equation 3.4 :

0 = &bs
= (asbs) (a5 + bg)
= p*30s (3.15)
It isimportant to note, that the equation aboveistrueonly if ps isformed astheinclusive-or

of ag and bs. The exclusive-or form of ps will not work! At thispoint it is assumed that ps
is produced from equation 3.5. That is:

ps = p'3 (3.16)
= &+ b3
Now substituting equation 3.15 into equation 3.14 gives:

G = pfyg+pT30+P P20+ Ptap2pido

= p*3(gs+ 92+ P201 + P2P1 o)
= p3H

which provides the definition for a new type of group signal, the Ling group pseudo carry
generate. This leads to the general definition for the function h, when computed across a

CHAPTER 3. ADDERS FOR MULTIPLICATION 55

series of bits:
g = PHih (3.17)
Or equivalently :
he=g+d " (3.18)

Again referring back to Figure 3.2, G is produced by two stages of logic. The first stage
computes the bit gy and py, and the second stage computes G from the bit gx and px. The
Ling pseudo-generate, H, can be produced in a single stage plus a wire-OR. To see this,
expand H directly in terms of the & and by inputs, instead of the intermediate gx and px :

H = abs+ab+aab +abb
+ apan @by + agay by by + & a by by + a by by by (3.19)

If negative logic inputs are assumed, then the function H can be computed in a single
INVERT-AND-OR stage. In principle, G can also be realized in asingle INVERT-AND-
OR stage, but it will require gates with up to 5 inputs, and 15 outputs must be connected
together in alarge wire-OR. Figure 3.8 shows a sample Ling 4 bit group.

3.3.2 Lookahead Logic

Consider the defining equation for h across 16 bits (from equation 3.18) :

h® = gis+ 0o’

= Ois+ 013+ P35 + P13 Ps 04 + P3PS P4 s
14 11

= Gus+ 01+ Pi3 (Ou+ pugd’) +pispst (o7 +pr)

14 11 7

+ Pi3Ps P; (95 + Ps 0d)

Assume that each of pys, p7, and ps are produced as p*;, pt5, and p*5. Then:

e = gis+0i3+pis (P u0u+ P u) +piips (pH o+ Pt i)

CHAPTER 3. ADDERS FOR MULTIPLICATION 56

U
¥

Figure 3.8: 4 bit Ling adder section.

CHAPTER 3. ADDERS FOR MULTIPLICATION 57

14 11 7

+ P12Ps Py (p+3 g+ Pps 93)

= Ois+ 033+ Pit (o +05°) +pisp (97 + &) + pima' ol (o5 +)
= Ois+ 013+ pi (gu+68°) +pitp (o7 +) + pi pi° 05 (s + G9)
= hi3+ pithg" + pri P hg + PP ps he

W5 | 15 Il | 15117 | 153117 13
= hp+iphg +ipig hg+ipigizhy

wherei isanew function defined as ;

IL =Pi—1Pi=2--- Pk Px-1 (320)

Note that the indexes on the p terms are dightly different than that of thei term. Using this
definition of i, the formation of h across multiple groups from the group H and | signals
is exactly the same as the formation of g across multiple groups from the group G and P
signals. Thus, exactly the same group and supergroup lookahead logic can be used for
the Ling adders, as was used in the CLA. Detail for the Ling lookahead logic is shown in
Figure 3.9. The only real differenceisthat G and P are replaced by | and H, which for a
four bit group are:

H = h
= O3+ 02+ P201+ P2P1%
= i3
= P2P1PoP’_;

Note that the formation of | requires the p* from the most significant bit position of the
adjacent group.

One minor nuisance with thisimplementation of the Ling adder, isthat the complement
of H is a difficult function to implement. As a result, only a positive logic version of
H is available for use by the first level of the lookahead logic. The fastest realization of
the group | signal is only available in a negative logic form. The first layer of lookahead
circuits (Figure 3.10) must be modified to accept a positive logic H and a negative logic
|. This requires a strange type of NOR gate which has a single inverting input, and from

Four Bit Ling Slices (16) Carry In

A N
4
H H H H H H H H H H H H H H H H
it et et et et [mT wE T T T mT [T T T
Ho T, H T, H T H o He o H, T, H T Ho T Ho T H T, H T H T He T, H, T H T H T
4 Group H,I Lookahea) 4 Group H,l Lookaheay 4 Group H,I Lookahea 4 Group H,I Lookaheay
S S A A S NI LRSS S s N LA S A A S M LSS & S O s N
(2 O [P P o [P L ¥ (2 R [S P s N A A AOTO|RDT RV |T AT Ao |T*C|A [T, |Fe [T |FS [T
G P||G P||CG P||CG P G P||G P||G P||C P G P||G P||CG P||CG P G P||G P||[CG P||G P
| s} =& = g & 3o = gH &4 & © g o T <
T:u | ﬁ) - T:u | E% ﬁ] - T:u | ﬁ) - T:u T:u | ﬁ] - T:u | ﬁ) Carry1 (Carry1 arryl (Carry1
_ _ _ _ _ _ _ _ ircuit ircui ircuit ircui
G GH G Gy G G G G- Carry arry?)[| (Carry. arry2 cy cy cy cy
PH PH PH P PH PH PH) ircui ircuit ircui ircuit
— — — — Cy Cy Cy Cy
G G G G) arry3)| [(Carry3 arry3)| [(Carry3
BH BH BH B ircuit ircui ircuit ircui ;;
Cy Cy Cy Cy
Carry4 arry4 arry4) Carry4
Circui ircuit ircui ircuit
Cy (Cy (Cy (Cy
U™ hes he, Ny h,, hy hs hs, Ny hy, hy hyg

Carry-Out

v
h . to Slices (16)

Figure 3.9: Group H and | connectionsfor Ling adder.

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

89

CHAPTER 3. ADDERS FOR MULTIPLICATION 59

|_3 H3 I_2 H2 _1 Hl _O HO
U U g U U
T R
! 0 HO | 0 HO ! 0 HO ! 0 HO

Figure3.10: H and | circuits.

1 to 3 non-inverting inputs. The circuit for such a strange looking NOR gate is shown in
Figure 3.11.

3.3.3 Producing the Final Sum

The lookahead logic returns the signal hi,, which is not atrue carry, to each of the groups.
For example, the signal supplied to the high order group (hgo from Figure 3.9) has produced
thefollowing signal :

heo = hg’ + i3’ Cin

Computation of the final sum requires the carry (Cso), Which can be recovered from hgg by
using equations 3.17 and 3.20:
Ceo = 989 + p89 Cin

59 58
= Py’ +PseP"] Cin

CHAPTER 3. ADDERS FOR MULTIPLICATION 60

N
> Out

Ino { Vb1

In2 Vb2

Vee

Out = In2 + Inl + In0O

Figure 3.11: NOR gate with 1 inverting input and 2 non-inverting inputs.

= Pleo |MG + i3 Cin
= p+59h60

This result can be used in place of ¢, in equation 3.13 to modify the logic in the output
stage to produce the proper sum [3] [34].

3.3.4 Remarkson Ling Example

This Ling adder example builds upon the CLA example presented previously. The Ling
schemeispotentially faster than the CLA design because the critical path consistsof 3NOR
stages and asingle EXCLUSIVE-OR stage vs 4 NOR stages and an EXCLUSIVE-OR for
the CLA. Since the wire lengths and gate counts of the two are very close, thisresultsin a
faster adder.

3.4 Multiple Generation for Multipliers

Chapter 2 described various partial product recoding algorithms, and in particul ar the Booth
series of multiplication algorithms. The Booth 3 multiplication agorithm can provide

CHAPTER 3. ADDERS FOR MULTIPLICATION 61

a significant reduction in the hardware requirements over conventionally implemented
algorithms, but requiresthe production of 3 timesthe multiplicand (3M). A general purpose
adder can be used to perform this computation, by adding the multiplicand to 2 times the
multiplicand. An adder that is designed specifically for computing this times 3 multiple
will result in a significant reduction in the hardware. An exampleis given in the first half
of this section.

The partially redundant Booth 3 algorithm described in the previous chapter provides
the hardware reduction of the general Booth 3 agorithm, along with removal of a carry
propagate add from the critical path. The performance depends on the the fast computation
of short length multiples (say < 14 bits or s0). The second half of this section shows how
these short length multiples can be efficiently and quickly computed.

3.4.1 Multiply by 3

The general ideais to replace the Ling 4 bit group (Figure 3.8), with a 7 bit group which
is specifically optimized for computing 3 times the input operand. The carry lookahead
network remains the same. Because a group now consists of 7 bits, instead of 4 bits, the
lookahead network issmaller, and could (depending on thelength required) befewer stages.

For this discussion, the assumption is that the B operand has been replaced by a shifted
copy of the A operand :

n-1
k=0

n
= Z -1 2
k=1
This gives the following result for gk and py :
Ok = &dk-1 (3.21)
Pk = a+ &-1 (3.22)

Substituting this into the equation for the group G (equation 3.10)gives:

R = mmtaat+amaan+aana

CHAPTER 3. ADDERS FOR MULTIPLICATION 62

Thisis much simpler than even the Ling expansion (equation 3.19). Sticking with the limit
of gates with no more than 4 inputs, it is possible to compute h§ in asingle stage:

h = aas+asautauatdadtaudnd+adsdant ikl

A sample 7 bit times3 group isshown in Figure 3.12. This section can beinterchanged with
the four bit Ling group (Figure 3.8), with the carry lookahead logic remaining unchanged.

Internal carriesrequired for thefinal sum generation (as per equation 3.13) are produced
directly from the primary inputs according to the following :

98 = a1

gé = aadHpt+aa:

@B = @atadntada

05 = @@ +aa+addtdda

U = umdtddt+uda+addt+udda

B = dutudt+dpetudd+aodd+ uedadl

Note the significant sharing possible between adjacent g terms, which is taken advantage
of in the implementation.

3.4.2 Short Multiplesfor Multipliers

A minor change to Figure 3.12 allows production of the biased short length multiple
required by the redundant Booth 3 multiplication algorithm from Chapter 2. However, this
modification still leaves alatency of 3 stages for this multiple. Asthis multipleislikely to
be on the critical path through the multiplier, one stage can be eliminated by modifying the
output stages to merge the gates labeled 1 in the figure into the output stages (gates |abeled
2). A sample circuit which performsthis merge is shown in Figure 3.13. The length of the
short multiple can be approximately doubled by connecting two short multiple generators
together as outlined in Figures 3.14, 3.15, and 3.16. Figure 3.14 shows a 13 bit section of
a redundant times 3 multiple, in the format shown in Figure 2.18 of Chapter 2. Note that
the scheme shown here is only good for negative logic inputs and outputs. Positive logic
inputs and outputs are dightly different. The figures show a 13 bit short multiple, which
isthe limit for this schemeif 4 input gates are used.

Peldot)

Pg

-’
-
Clel
-

<39l
{J2|
-t
<2

Figure 3.12: Times 3 multiple generator, 7 bit group.

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

€9

CHAPTER 3. ADDERS FOR MULTIPLICATION

Py
P
0 Vce
Carry
G
Half-Sum
> Sum
> Sum
Vb1

e () () @ %

’
wh G B

s

e
Vb3
HaIf-SumD—@ @9
Vee
Figure 3.13: Output stage.
PR
Half [| . - Half
sjm| High Order 6 Bits | p_ | Low Order 7 Bits |
From Next Y X 3_312 3_311 3_3103_39 3_as ﬁ 3_ae E 3_34 3_33 3_az 3_a1 From Previous
13 bit section 13 bit section
OJ@\Q.QQQ. 000000
O O

Figure 3.14: 13 bit section of redundant times 3 multiple.

-ty

<l
el
Il
el
=l
8l
—Pl

b

b

b
b—

325 3a, 32 3% 3a

Figure 3.15: Short multiple generator - low order 7 bits.

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

G9

-
-y
N
8l
]
-ty
sl

—
:

L

%| Yo

Jps

Half-Sum[>

Figure 3.16: Short multiple generator - high order 6 bits.

G hin

NOILYOI'dILTINN 404 SH3Addyv € 441dVHD

99

CHAPTER 3. ADDERS FOR MULTIPLICATION 67

3.4.3 Remarkson Multiple Generation

Efficient methodsfor producing 3 times an operand, both full length and short lengths, have
been presented above. Other useful multiples to generate would be 5 times, and 7 times
an operand, but there appears to be no better scheme than just using a conventiona carry
propagate adder.

3.5 Summary

As will be shown in Chapter 5, carry propagate adders play a crucial role in the overall
performance of high speed multipliers. This chapter has described a number of efficient
and high performance adder designs which will be used in the multiplier evaluations in
the following chapters. Although the designs have been specifically tuned for ECL based
adders, the ideas can be applied to other technologies.

Specifically, this chapter has presented an adder design that uses the Ling |ookahead
method. Thisadder has oneless stage of logic along the critical path than an adder using the
traditional carry lookahead method. Sincethe complexity and wirelengths are comparable,
thisleadsto afaster adder.

Significant hardware reductions (about a 20% reduction in gate count) can result by
designing a specialized adder to compute 3M. Because the basic group size can be made
longer the performance may also improve, since fewer stages are required for the carry
propagation network.

By carefully optimizing thecircuits, an efficient and fast (2 stages of logic) short multiple
generator can also be designed. The speed and efficiency of this block is crucial to the
performance of the redundant Booth 3 multiplication algorithm described in Chapter 2.

Chapter 4
| mplementing Multipliers

Chapter 2 described various methods of generating partial products, which then must be
added together to form a final product. Unfortunately, the fastest method of summing
the partial products, a Wallace tree or some other related scheme, requires very complex
wiring. The lengths of these wires can affect the performance, and the wires themselves
take up valuable layout area. Manually wiring a multiplier tree is a laborious process,
which makes it difficult to accurately evaluate different multiplier organizations. To make
it possible to efficiently design many different kinds of multipliers, an automated multiplier
generator that designs the layout of partia product generators and summation networksfor
multipliersis described in this chapter. Since the partial product generator and summation
network constitute the bulk of the differences between various multiplication algorithms,
many implementations can be evaluated, providing a systematic approach to multiplier
design. The layouts produced by this tool take into consideration wire lengths and delays
asamultiplier is being produced, resulting in an optimized multiplier layout.

4.1 Oveview

The structure of the multiplier generator is shown in Figure 4.1. Inputsto thetool consists
of varioushigh level parameters, such as the length and number of partial products, and the
algorithm to be used in developing the summation network. Separately input to the tool
is technology specific information, such as metal pitches, geometric information about the

68

CHAPTER 4. IMPLEMENTING MULTIPLIERS 69

of Multiplier

Geometric Technology
Information Information
Description Layout Tool << Timing tables

from SPICE

l

Cell Library
L Language File

GDT

Final Layout

Figure4.1: Operation of the layout tool.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 70

primitive cells, such as the size of a CSA, 1/0 terminal locations, etc., and timing tables,
which have been derived from HSPICE [18]. The output of the tool is an L language
(alayout language) file, which contains cell placement information and a net list which
specifiesthecell connections. ThelL fileisthen used asinput to acommercia | C designtool
(GDT from Mentor Graphics). Thiscommercial tool actually placesthe cells, and performs
any necessary routing using achannel router. Because most thingsare table driven, the tool
can quickly be modified to adapt to different technologies or layout tools.

4.2 Delay Modd

An accurate delay model is an essential part of the multiplier generator if it is to account
for the effect of wire lengths on the propagation delay while the layout is being generated.
Simplemodelswhichignorefanout, wiredelays, and inputsthat differ in propagation delays
(like that of Winograd [39] [40]), can lead to designs which are slower and/or larger than
the technology would allow.

The multiplier generator uses a delay model (Figure 4.2) based upon logic elements
that are fan-in limited, but each input has a different arrival time at the main logic element
(Delayl, Delay?2, etc.) The main logic element has an intrinsic delay (Main Delay), and

Delayl ——>»

Delay 2 ——>»

) Output
Inputs Main Delay pelay — > Output
Delay 3——>»

Delay 4 ——>»

Figure 4.2: Delay model.

the output also has a fixed delay (Output Delay) . Each output also has a delay which

n actual use the Main Delay and the Output Delay are not really needed and in fact are set to 0.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 71

is proportional to the length of wire being driven. A factor for the fan-out should also be
included, but is not necessary for multipliers, since al of the CSAshaveafan-out of 1. The
individual delays are determined by running SPICE or HSPICE, as is the proportionality
constant for the wire delay.

4.3 Placement methodology

A general block diagram for a multiplication implementation is shown in Figure 4.3. A
high speed parallel multiplier consists of apartial product generator, a summeation network
responsiblefor summing thepartial productsdown to two final operandsinacarry propagate
free manner, and afinal carry propagate adder which produces the final product.

4.3.1 Partial Product Generator

To understand how the partial products are formed, an 8x8 bit example using the smple
multiplication algorithm described in Chapter 2 will be used. The partial product dot
diagram for such a multiplication is shown in Figure 4.4. Each dot represents an AND
gate which produces a single bit. The dots in the figure are numbered according to the
particular bit of the multiplicand (M) that is attached to the input of the multiplexer. These
multiplexers are then grouped into rows which share acommon select line to form asingle
partial product. Each row of the dot diagram represents an 8 bit wide sel ection multiplexer,
which selects from the possible inputs O and M. The select line on the 8 bit multiplexer
is controlled by a particular bit of the multiplier (Figure 4.5). A diagonal swatch of
multiplexers (Figure 4.6) consists of multiplexers that require access to the same bit of
the multiplicand. Finally a vertical column of multiplexers all have outputs of the same
arithmetic weight (Figure 4.7).

The layout tool uses the following methodology asit places the individual multiplexers
that form each partial product (refer to Figure 4.8). The first row of multiplexersis placed
from right to left corresponding to the least significant bit to the most significant bit. The
select for each partial product isthen run horizontally over all the multiplexersintherow. A
vertical routing channel isallocated between each column of multiplexers. Themultiplexers

CHAPTER 4. IMPLEMENTING MULTIPLIERS

Multi plicand

J

Partial Product Generator

[

Partial Products

Summation Network

M
Two 2n bit operands

Carry Propagate Adder

.@.

Final 2n bit Product

Figure 4.3: Multiplication block diagram.

Multi plier

72

CHAPTER 4. IMPLEMENTING MULTIPLIERS 73

Figure4.4: Partial productsfor an 8x8 multiplier.

© 0606 60

O 606 60

© 6 6 0

e 6 0

X

S
These bits share the
same select line

Figure4.5: A single partial product.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 74

These bits share the same bits of
the multiplicand (bit 2 in this case).

Figure 4.6: Dots that connect to bit 2 of the multiplicand.

for the second row of horizontal dots are then placed immediately underneath the first row
of multiplexers, but shifted one position to the left to account for the additional arithmetic
weight of the second partial product with respect to thefirst. Bits of the multiplicand that
must connect to diagonal sections are routed in the routing channel and over the columns of
cells using feedthroughs provided in the layout of the individual multiplexers. The outputs
of the multiplexers are then routed to the summation network at the bottom. Note that all
bits of the same arithmetic weight are routed in the same routing channel. This makes the
wiring of the CSAsrelatively simple.

Multiplexer Alignment

Early versionsof thissoftwaretool allowed adjacent bitsof asingle partial product generator
tobeunaignedintheY direction. For some of the multiplication agorithms, alarge number
of shared select wires control the multiplexersthat create these bits. If these multiplexers

CHAPTER 4. IMPLEMENTING MULTIPLIERS 75

—
These bits have the same arithmetic weight

Figure 4.7: Multiplexerswith the same arithmetic weight.

are aligned in the Y direction (as shown in the top of Figure 4.9, these shared wires,
run horizontally in a single metal layer and occupy no vertical wiring channels. If these
multiplexers are instead allowed to be misaligned (the bottom of Figure 4.9), the wires
make vertical jogs in the routing channel, and an additional metal layer will be needed for
the vertical sections. This could cause the channel to expand in width. For thisreason, the
current implementationforcesall bitsinasingle partial productto lineupintheY direction.
Animproved version of the program might allow some limited amount of misalignment to
remove "packing spaces’. These are areas that are too small to fit anything into, created by
the forced alignment of the multiplexers. The final placement of the multiplexers for the
sample 8x8 multiplier is shown in Figure 4.10

An alternate approach for organizing the partial product multiplexers, that was not used,
involves aligning the partia productsin such away that selects run horizontally (same as
before), and bits of the multiplicand run vertically (Figure 4.11). Cell feedthroughs are
still required, as a particular bit of the the multiplicand may till have to reach multiplexers
that arein two adjacent columns, if the Booth 2 or higher algorithms are being realized. In

CHAPTER 4. IMPLEMENTING MULTIPLIERS

O 0/6 0 60660
O 0 6/0 6060
0 60|60 60
O 06060660
O 0 606060
O 06 606060 6|0
O 0 60606060
Multiplicand bits run
O 0 6 0 6 0 606 0 diagonally, using feed
throughs provided in
selectors to hop
between routing
channels
7 6
—_ 70 |—= 6 ff|— 5
]]]
C C C
SHI R [
Selects run
6 5 6 4 6 3 horizontally,
o = = over the cells
c | S |dE |2
= S5]!
o 3 o o
o 2 o 1 o 0
T T—
1 0 \
e e Vertical column of

Partial product bits appear at the bottom of the
routing channels, with all bits of the same
arithmetic weight in the same channel

Figure 4.8: Physical placement of partial product multiplexers.

76

CHAPTER 4. IMPLEMENTING MULTIPLIERS

Routing Channel
K—/%

Partial Product Partial Product

Partial Product

Select 0X
Select 1X
Select 2X

Select 0X
Select 1X
Select 2X

Figure 4.9: Alignment and misalignment of multiplexers.

77

CHAPTER 4. IMPLEMENTING MULTIPLIERS

0

Routing Channel | = > \
Routing Channel | — >

Routing Channel | ~ >

Routing Channel | ™ >

[= |

Routing Channel | <

[-~ 1 =}

Routing Channel | 0 >

[~ [=~] = |

Routing Channel | © >

[» |~ 1 - 1=

Routing Channel | ~ >

| ~ [o | «] =«] =1}

Routing Channel | ® >

[o [« | o [~]~}

Routing Channel |) }

[e [o | «~ [~ |~ |

Routing Channel | S D

[~ e]l ~]-]

Routing Channel | 5 >

L~ e =]~}

Routing Channel | S

Routing Channel | o)

Routing Channel | 5 0>

Partial Products -- To summation network

Figure 4.10: Multiplexer placement for 8x8 multiplier.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 79

Figure4.11: Aligned partial products.

addition, the partial product bitsin any particular routing channel are of varying arithmetic
weight, requiring unscrambling before being applied to the summation network. This
methodology is used for linear arrays, as the unscrambling can occur in sequence with
the summation of the next partial product. The unscrambling requires about as much
extra wiring as routing the bit of the multiplicand diagonally through the partial product
selectors, which was why this method was not used by the multiplier generator. Aligning
the partial products should have comparable area and performance. Note that this method
requires approximately N (N is the length of the multiplicand) routing channels, whereas
the previous method required about 2N routing channels. The tree folding optimization
(described below) reduces the number of routing channels actually needed in the previous
method to about N. The decision was made to concentrate on the first method because there
are many more partial product output wires (N?) than there are multiple wires (N), and
it will require less power to make N wires a little longer verses N2 a little longer. Also
having wires of the same arithmetic weight emerge from the same routing channel makes
the placement and wiring of the CSAsin the summation network easier.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 80

4.3.2 Placingthe CSAs

The goal of the CSA placement phase of the multiplier generator is to place and wire up
the CSAs, given a particular partial product multiplexer arrangement. Using the minimum
amount of area and the smallest delay, the partial productsareto be reduced to two numbers
which can then be added to form the final product.

The multiplexer placement scheme used by the multiplier generator creates a topology
illustrated in Figure 4.10. The multiplexers have been placed such that all multiplexer
outputs of a given arithmetic weight border the same vertical routing channel. The task
now is to place CSAs in the cell columns and wire them together in the routing channel.
Since all inputs of a correctly wired CSA must have the same arithmetic weight, and all
multiplexer outputs of a given arithmetic weight border the same vertical routing channel,
the cell column that a CSA will be placed in is completely determined by the arithmetic
weight of it's inputs. The placement of the CSAs occurs sequentially, and as each CSA
isadded it is placed below all other previoudy placed cells. Other phases after the initial
placement can move CSAs around in an attempt to reduce area or delay.

The assumed geometry for a CSA is shown in Figure 4.12. The power supplies run
vertically over the cell in some top level metal. The inputs are all on the right side of the
cell. The sum output is al'so on the right hand side, but the carry output is on the left side.
The placement and wiring of a CSA in a vertical column can be thought of as taking 3
wires of a given arithmetic weight out of the routing channel on the immediate right, and
replacing them with a single wire of the same weight and creating a new wire of weight+1
which is placed in the routing channel to the immediate | eft.

At any point during the placement of the CSAS, there are a number of multiplexer
outputs or previoudly placed CSA outputs that have not been connected to any input. The
next CSA to placed must be connected to 3 of these unwired outputs. The 3 wires are
chosen using the following heuristic :

e A virtual wire is attached to each unwired CSA or multiplexer output. This wire
extends to the bottom of the placement area. Thisvirtual wire is added because even
if an output isnever wiredto aCSA, it must eventually connect to the carry propagate
adder placed at the bottom. By placing avirtual wireit makes outputsthat are already

CHAPTER 4. IMPLEMENTING MULTIPLIERS 81

Power supplies run
vertically over the cell

CSA [« °

carry — — sum

f Outputs f

Figure 4.12: Geometry for a CSA.

near the bottom more likely to be connected to a CSA input, and outputs that are near
the top (and require along wire to reach the bottom) less likely to be connected to a
CSA input. Asaresult, faster outputs (near the bottom) will go through more levels
of CSAs and slow outputs (due to long wires to reach the bottom) will go through
fewer levels of CSAs, improving overall performance.

e The propagation delay from the multiplicand or multiplier select inputs to each of
the unwired outputsis computed, using the delay model described earlier. Individual
bits of multiples of the multiplicand or the multiplier select signals are assumed to
be valid at a time determine by a lookup table. This lookup table is determined by
iterative runs of the multiplier generator, which can then allow for wire delays and
possible differencesin delaysfor individual bits of asingle partial product.

e The output having the fastest propagation delay is chosen as the primary candidate
to be attached to a CSA. A search is then made for two other unwired outputs of the
same arithmetic weight. If two other unwired outputs of the same arithmetic weight

CHAPTER 4. IMPLEMENTING MULTIPLIERS 82

cannot be found, then this output is skipped and the next fastest output is chosen,
etc., until agroup of at least 3 wires of the same arithmetic weight are found. If no
group can be found, then this stage of the placement and wiring is finished, and the
algorithm terminates.

¢ A new CSA isplaced inthe column determined by the arithmetic weight of the group.
The primary candidate is wired to the input of the new CSA which has the longest
input delay. Of the remaining unwired outputs with the same arithmetic weight asthe
primary candidate, the two slowest possible outputs are chosen which do not cause
an increase in the output time of the CSA. These outputs are then wired to the other
two inputs of the CSA.

In effect, thisis a greedy algorithm, in that it is constantly choosing to add a CSA delay
along the fastest path available. There are other procedures that will be described below
that help the algorithm avoid local minimums as it places and wires the CSAs

This algorithm can run into problems, illustrated by the following example. Refer to
the top of Figure4.13. The left section shows a collection of dots which represent unwired
outputs. The arithmetic weight of the outputsincreases from right to left, with dotsthat are
vertically aligned being of the same arithmetic weight. The above agorithm will find the
3 outputs in the little box and wire them to a CSA. This will give an output configuration
as shown in the center section. The algorithm will repesat, giving the right section. This
sequence of CSAs will be wired in series — essentially they will be wired as aripple carry
adder. Thisistoo dow for a high performance implementation. The solution is to use half
adders (HA) to break the ripple carry. As shown in the bottom of Figure 4.13, the first
step uses a CSA, but also agroup of half adders to reduce the unwired outputs to the final
desired form in one step.

Placement of half adders

When and where to place half adders is based upon a heuristic, which comes from the
following observations. These observations are true in the case where the propagation
delay from any input of a CSA to any output are equal and identical to the the propagation
delay from any input of a HA to any output. Also, all delays must be independent of any

—>

Without Half Adders

|t =

With Half Adders

—>

Figure 4.13: Why half adders are needed.

SHAIHILTINN ONILNIWFIdNT 7 43 1dVYHO

€8

CHAPTER 4. IMPLEMENTING MULTIPLIERS 84

fan-out or wire length.

Observation 1 If a group of CSAs and HAs are wired to produce the minimum possible
propagation delay when adding a group of partial products, then there will be at most one
HA for any group of wires with the same arithmetic weight.

Proof : Assume that a minimum propagation delay wiring arrangement that has 2 or more
HA's connected to wires of the same arithmetic weight. Pick any two of the HA's (left side
of Figure4.14). The HA's have a propagation delay from any input to any output of 6. The

N L.
<T
T+3 T+3 T
Carry Sum | B p¢&——
nputs <H Inputs
Che——
HsT HsT
A CSA| |
<H
:
H+d H+8 T+90 T+0
Carry Sum Carry Sum
by Y P]
Carry Outputs at Sum Outputs at Carry Output at Sum Outputs at
Time H+0 and TH Time H+ and T® Time T+ Time H and T$

Figure4.14: Transforming two HA'sinto asingle CSA.

top HA in thefigure has arrival timesof T on the A input, and an arrival time of less than
or equal to T on the B input. Thus, the propagation delay of the top HA is determined by
the A input. Similarly, for the bottom HA the propagation delay is again determined by
the A input arrival time of H, with the assumption that H is less than or equal to T. Such a
configuration can be replaced by asingle CSA (right side of Figure 4.14), where the inputs
are rewired as shown. The outputs of the CSA configuration are available at the same
time or before the outputs of the HA configuration, thus the propagation delay of the entire
system cannot be increased. This substitution process can be performed as many times as
needed to reduce the number of HA's connected to wires of the same arithmetic weight to 1
or 0. Toemphasize, Observation 1 istrue only when the delay effectsof wiresareignored,
and the propagation delay from inputsto outputs on CSAsand HAsisthe samefor all input

CHAPTER 4. IMPLEMENTING MULTIPLIERS 85

to output combinations. As aresult it does not apply to real circuitry, but it is used as a
heuristic to assist in the placement of half adders.

Observation 2 If group of CSAs and a HA are wired to produce the minimum possible
propagation delay when adding a group of partial products, then the inputs of the HA can
be connected directly to the output of the partial product generator.

Proof : Assume that Observation 1 is applied to reduce the number of HA's attached to
wires of a specific arithmetic weight to 1. If the HA is not connected directly to a partia
product generator output, then there must be some CSA that isconnected directly to apartial
product generator output. This configuration is illustrated by the left side of Figure 4.15.
The arrival times on the A inputs of both the CSA and the HA determine the output times

-
A Switch AB
B <T inputs on the
HA with B,C
T+d T+d : <H+d
Carry Sum mpUtS on the Carry Sum
CSA
o
A
<H
B
<H
C
CSA
H+d H+d T+d T+d
Carry Sum Carry Sum
v l 1 A 4 A 4 l l A 4
Carry Outputs at Sum Outputs at Carry Outputs at Sum Outputs at
Time T+ and H#© Time Ht0and T® Time T+d and< H+d Time T+ and<H+9d

Figure 4.15: Interchanging a half adder and a carry save adder.

of the two counters®>. The CSA A input arrives earlier than the A input on the HA. The two
counters can be rewired (right side of Figure 1) such that the A input on the HA arrives

2A counter refers to either aCSA or aHA

CHAPTER 4. IMPLEMENTING MULTIPLIERS 86

earlier, without increasing propagation delay of the entire system. This process can be
repeated until the HA is attached to the earliest arriving signals, which would be the output
of the partia product generator.

Even though Observations 1 and 2 are not valid in the presence of wire delays and
asymmetric input propagation delays, they can be used as the basis for a heuristic to place
and wire any needed HAs. Half adders are wired asthe very first counter in every column,
and themultiplieristhenwired asdescribed above. Thecritical path timeof themultiplieris
then determined. Then starting with the most significant arithmetic weight, the half adder is
temporarily removed and the network isrewired. If the critical path timeincreases, thenitis
concluded that ahalf adder is needed at this weight, and the removed half adder is replaced.
If the critical path time does not increase, then the half adder is removed permanently. The
process is then repeated for each arithmetic weight, giving alist of weights for which half
adders are required.

4.3.3 TreeFolding

The layout tool, as described so far, organizes the partial productsin rows of multiplexers.
The shifting that occurs between partial products to allow for the different arithmetic
weights, causes the layout to take a trapezoidal shape (refer back to Figure 4.10). Adding
the CSAsexaggeratethis shape even more, making it almost football shaped, sincethereare
more CSAsin columnsthat have the most vertical partial product bits. This shape does not
lend itself to rectangular fabrication. Although circuitry can sometimes be hidden in these
areas, it is more efficient to use a layout methodology that produces a more rectangular
shape. The method of aligning the partial products was mentioned earlier, but the wiring
of the CSAs is more difficult, since outputs of many differing arithmetic weights appear
in a single routing channel. Tree folding is another method of making the layout more
rectangular. Figure 4.16 shows the right half of Figure 4.10, plus there is a black line
through the third routing channel from the right. All multiplexers that lie to the right of
this line are folded back under as shown in Figure 4.17. Although this would seem to
create unusabl e holes of empty space, the technique of embedding CSAs (described below)
among the partial product multiplexersis able to move CSAs into most of these holes, so

CHAPTER 4. IMPLEMENTING MULTIPLIERS 87

|]auuey) Bunnoy
|]auuey) Bunnoy
|]auuey)d bunnoy
|]auuey) bunnoy
|]auuey) Bunnoy
|]auuey) Bunnoy
|[auuey)D bunnoy

Everything on this side Everything on this side
is left alone Hinge is folded under

Figure 4.16: Right hand partial product multiplexers.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 88

6 5
Single Partial Product
0
5 4
ol = 0 0 Single Partial Product
o o o o
c c c c
= =, =, =,
> > > >
«Q «Q «Q «Q
Qll,ll 9ll:ll @ ®
> > > >
A1 (= (= ngle Part
S 5 5 5 Single Partial Product
@ o @ @
2 1 Single Partial Product
1 0 Single Partial Product
0 Single Partial Product

Hinge

Figure 4.17: Multiplexersfolded under.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 89

very little space is wasted. The same scheme can be used on the left half of the layourt.
In general, this technique can eiminate ailmost half of the required routing channels. The
program chooses the hinge point by iteration. The right most routing channel is used asthe
initial hinge point. The layout isdone, and if the areais smaller than any previous layouts,
the hinge point gets moved one column to the left. This continues until the smallest areaiis
obtained. The method isthen repeated for the left side.

Thefinal result from the summation network emerges folded back upon itself, but some
experiments were done with adder layouts and it seems as though the size and performance
of thefinal carry propagate add is not effected significantly by thisfolding.

4.3.4 Optimizations

There are a number of optimizations which are done as the layout is being developed, to
improve the area or reduce the delay.

Embedded CSAs

To further reducethe number of vertical wiring tracks needed in therouting channels, aCSA
can be moved closer to the outputsthat are connected to it’sinputs. These outputs can come
from either a partial product multiplexer or another CSA. For example, the configuration
shown in the left half of Figure 4.18 takes 3 vertical routing tracks. Moving the CSA to
a location between the outputs requires only 2 routing tracks (right side of Figure 4.18).
To provide space for such movement, the initial placement of the partial product selection
multiplexers has vertical gaps. There are also gaps created by the tree folding as described
previously. Asthe CSAs are added, checks are made to determine whether a CSA can be
moved into such an area, subject to the constraint that the propagation delay of the path
through this CSA cannot increase. This overly constrains the problem, because not every
CSA isaong the system critical path. After the CSAsareall placed, and the critical pathis
determined, additional passes are done which attempt to movethe CSAsinto such locations
to minimize the number of vertical routing channels.

CHAPTER 4. IMPLEMENTING MULTIPLIERS

3 Routing 2 Routing
Mux Tracks Mux Tracks
f_/H
Mux Mux
a
Mux CSA b
c
:| sum
a
CSA b Mux
c
sum
1)

Figure 4.18: Embedding CSA within the multiplexers.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 91

Wire Crossing

Wire crossing elimination is used to improve performance and wiring channel utilization.
The left side of Figure 4.19 illustrates a possible wire crossing. These wire crosses are

A A
B A B A
CSA CSA
C B C B
CSA CSA
Carry Sum C Carry Sum C
Carry Sum Carry Sum

A A
A A
B B
CSA B CSA B
c CSA c CSA
C C
Carry Sum Carry Sum
Carry Sum Carry Sum
%/—/ %/—/
Routing Channel Routing Channel

Figure 4.19: Elimination of wire crossing.

created when a CSA ismoved upward in acell column as described earlier. The inputs can
be interchanged (right side of Figure 4.19), and the width of the routing channel reduced if
the following three conditions are met :

e The wires must have the same arithmetic weight.

e Thedelay along the critical path must not increase.

CHAPTER 4. IMPLEMENTING MULTIPLIERS 92

e A cycle must not be created by the interchange. That is there cannot be feedback,
either direct or indirect, from the output of a counter to one of it’s own inputs.

Each wire crossing eliminated saves 2 routing tracks, allowing possible compression of the
routing channel. The delay may aso be reduced since the wires driven by the outputs are
shorter.

Differential Wiring

A major performance gain can be obtained by selectively using differential ECL in place
of standard single ended ECL. This optimization is illustrated by the circuit shown in
Figure 4.20. The reference input in the standard gate is replaced by a second wire which

== § y

7\
2

In 4;]7 » Out

F [\
y [\
F \

Vcs

: : 3

Vee

Figure 4.20: Differential inverter.

is aways the complement of theinput. The addition of the second wire alows the voltage
swing on both wires to be half that of the single ended case, yet maintaining the same (or
better) noise margin. The gate delay of the driving gate is halved, asisthe wire delay. On

CHAPTER 4. IMPLEMENTING MULTIPLIERS 93

the down side, the area and power consumption of the driving gate is increased, due to the
second output buffer. A larger routing channel may also be needed to accommodate the
extra signa wire required. This optimization is very useful in reducing the delay along
critical paths. Differential wires are introduced according to the following rules:

e A candidate wire must lie along a critical path through the multiplier, and it must not
already be adifferentia wire.

e The addition of the second wire must not increase the routing channel width.

¢ If no wire can be found that satisfies both of the above conditions, then find a wire
that satisfies only the first condition and expand the routing channel.

This process is continued until no wires can be found that satisfy the first condition. The
process may also be discontinued prematurely if thisisdesired.

Emitter Follower Elimination

Emitter followers are output buffersthat are used to provide gates with better wire driving
capability and also to provide any level shifting that isrequired to avoid saturating the input
transistors of any gates being driven. For differential output gates, two emitter followers
are needed. All single ended gates require some level shifting to facilitate the production
of the reference voltages. Differential gates do not require such a reference voltage, so
thislevel shifting may not be required. For short wires, the buffering action of the emitter
follower is also not needed, so these emitter followers can be eliminating, reducing area
and power consumption.

Power Ramping

The delay through a short wire (length < 2mm) is inversely proportiona to the current
availableto charge or dischargethe wire (see Equation 1.2). Thisprovidesadirect trade-off
that can be made between the power consumed by an output buffer and the delay through
the wire driven by the buffer. In afull tree multiplier, there are large numbers of wires
that do not lie along the critical path, thus there is the potential for large power savings

CHAPTER 4. IMPLEMENTING MULTIPLIERS 94

by tuning the current in the emitter follower output buffer. In principle, afollower driving
a completely non-critical wire could be ramped to a negligible current. For noise margin
reasons, however, there is a limit to the minimum current powering a follower, so the
practical minimum is about 211 the maximum follower current.

The currents powering non-critical logic gates can also be reduced, increasing the
propagation delay of the gate. The noise margin requirements are different for gates, so
they can be ramped to lower currentsthan can the emitter followers. The minimum current
isagain limited, but this time by the fact that lower currents need larger resistor valuesin
the current source powering the gate. This larger resistors can consume large amounts of
layout area. Although the resistors can be hidden under routing channels, the practical limit
seems to be about 10K Q. This again provides aratio of about ;11 between the smallest and
largest currents allowed.

4.4 Verification and Simulation

The correctness of the layout is constantly monitored during the layout process, but it is
still useful to have some form of cross checking to guard against the presence of software
bugs. A verification pass is performed on the final net list. This verification consists of the
following checks :

e All CSAs (carry save adders) have al inputs connected to something (No floating
inputs).

e All CSAs in the summation network have all outputs connected to something (No
bitsare lost).

e All partial product multiplexer outputs are connected to a CSA input (No bits are
lost).

e All inputs to a given CSA have the same arithmetic weight (Make sure the correct
things are added).

e Noinput to agiven CSA can be driven directly or indirectly by any output from the
same CSA (no feedback).

CHAPTER 4. IMPLEMENTING MULTIPLIERS 95

e All wires have exactly one CSA input attached (Each partial product is added no
more than once).

e All wires have exactly one output attached, which could come from either a partial
product multiplexer or a CSA (No outputs are tied together).

Addition verification can also be performed by a transistor level ssimulation of the layout
(see Section 5.5).

4.5 Summary

An automatic software tool which assembles summation networks for multipliers has been
described. Thistool produces placement and routing information for multipliersbased upon
avariety of algorithms, using a CSA as the basic reduction block. Most of the algorithms
used in the tool for placement and routing have been developed by the process of trying
many different methods and refining and improving those methods that seem to work. A
number of speed, power and area optimizations have been presented.

Chapter 5 will use this software tool to evaluate implementations using various par-
tial product generation algorithm. Implementations produced with the tools will then be
compared to other implementations described in the literature.

Chapter 5
Exploring the Design Space

This chapter presents the designs of a number of different multipliers, using the partial
product generation methods described in Chapter 2. The speed, layout area, and power
for multipliersimplemented with each of these methods can only be accurately determined
with a complete design, including the final layout. The layout generator described in
Chapter 4 provides a mechanism with which a careful analysis can be performed, asit can
produce a complete layout of the partial product generation and summation network. In
combination with a design for an efficient carry propagate adder and appropriate multiple
generators (both described in Chapter 3), acomplete multiplier can beassembled inamostly
automated manner. I mportant measures can then be extracted from these compl ete designs.

The target multiplier for this study is based upon the requirements of |EEE-754 double
precision floating point multiplication [12]. The format for an |IEEE double precision
number is shown in Figure 5.1. The IEEE representation stores floating numbers in a
normalized, sign magnitude format. The fraction is 52 bits long, normalized (leading bit
of 1), with the"1" implied and not stored. This effectively givesa 53 bit fraction. To meet
the accuracy requirements of the standard the full 106 bit product must be computed, even
though only the high order 53 bits will be stored. Although the low order 51 bits are used
only in computing the "sticky bit" (if the low order 51 bits of the product are al 0, then the
"sticky bit " is high - see Appendix B), al of the carries from the low order bits must be
propagated into the high order bits. The critical path and most of the layout area (> 95%)
involved in a floating point multiplication is due to the multiplication of the fractions, so

96

CHAPTER 5. EXPLORING THE DESIGN SPACE 97

Sign of Fraction,

s (1 bit) Normalized Fraction, f (52 bits) Biased Exponent, e (11 bits

A

\ 4

64 Total bits

Number Represented = (S1(L.f)(26-1023
Figure5.1: |EEE-754 double precision format.

thisisthe only areathat will be addressed in the sections that follow.
Since the emphasis of this thesis is on speed, the delay goal for the complete fraction
multiply is 5 nsecs or less.

5.1 Technology

All multiplier designs are based upon an experimental BICMOS process15]. A brief
summary of the process technology is shown in Figure 5.1. Although this process is
BiCMOS, the test designs use only bipolar ECL logic with 0.5V single ended/0.25V
differential logic swings.

The basic circuits for a CSA and a Booth 2 multiplexer are shown in Figures 5.2 and
5.3. Inorder to provide some form of delay reference, the propagation delay curvesfor the
CSA areshown in Figure 5.4. Thisfigure shows the propagation delay vs load capacitance
for a CSA with a 200¢A tail current. There are three 0.5V swing single ended curves,
corresponding to an output driven through an emitter follower and 0,1 or 2 level shifting
diodes. Each emitter follower is powered by a200uA pulldown current. Four curves are
shown for 0.25V differential swings. The differential @O0 output has no emitter followers,
the others have apair of emitter followers, each powered with 200¢A, and 0,1, or 2 diodes
per follower. In this technology 1 mm of wire corresponds to about 300fF. Figure 5.5
zoomsin on the areawhere the load capacitance isless than 100fF. The dashed vertical line
corresponds to the approximate capacitance that would be seen if another CSA was being
driven through awirethat is twice the CSA height.

CHAPTER 5. EXPLORING THE DESIGN SPACE

e Process:

— 0.6p (drawn) BiCMOS
— 4 layer metal, thick MET4 for power

e Bipolar Transistors :

— 16 GHz F+ @ 200:A

— 2KQ/sguare polysilicon resistor
e CMOS (3.3V):

- 045,u nfet/pfet L et

— nfet/pfet V+ = +£0.6V
— 10.5 nm gate oxide thickness

Table 5.1; BiCMOS Process Parameters

vcc

f
o

e
i
e

=7
=y
i

S

VCs |y 1

VEE

Figure5.2: CML/ECL Carry save adder.

98

CHAPTER 5. EXPLORING THE DESIGN SPACE

VCC

£

. Partial Product

Bitn

i

VB1

Invert —»

Multiplicand
Bitn NS :]

o

Multiplicand__

Bit n-1

Select lXﬂ

n NN,

Select 2.

>
>

Select 0.

VCs —2

VEE

Figure 5.3: CML/ECL Booth 2 multiplexer.

5.2 High Performance Multiplier Structure

99

The basic structure of amultiplier is the same regardless of the particular partial product
generation algorithm that is used. The multiplier structure used in this study is shown in
Figure 5.6, and consists of a number of subsections which will be considered separately in

the discussion to follow. The delay components of a multiplier based upon this structure

are shown in Figure 5.7. In this figure time moves from |eft to right, with operations that

can be performed in parallel arranged vertically. The delay through al blocks, except for
thefinal carry propagate add, are dependent to some degree by the particular partia product
generation algorithm that is being implemented. The software layout tool described in

Chapter 4 produces the summation network, but the other parts aso contribute significant

delay and layout area. Evaluation of a particular multiplier implementation must include

the effects of these other blocks.

CHAPTER 5. EXPLORING THE DESIGN SPACE

Propagation Delay (psec)

1600

1400

1200

1000

800

600

400

200

100

L oad Capacitance (fF)

Figure5.4: Delay curvesfor CSA adder.

- Single Ended@3
— Y SingleEnded @ 2 .
¢ Single Ended @1
—<>— Differentid @0
-+ A Differential @3 i
—2&— Differential @2
° Differential @1
.
/ :
Vo
E;" .
M —
! I I I I I
0 200 400 600 800

1000

CHAPTER 5. EXPLORING THE DESIGN SPACE 101

Propagation Delay (psec)

250

200

150

100

50

Single Ended@3

—L——Single Ended @ 2 "

L 2

Single Ended @1

—O>—— Differentia @0

A

Differential @3

—24— Differential @2

L]

Differential @1

20 40 60 80 100
L oad Capacitance (fF)

Figure 5.5: Delay for loads under 100fF.

CHAPTER 5. EXPLORING THE DESIGN SPACE 102

Multi plicand

J

Partial Product Generator

Multi plier

[

Partial Products

Summation Network

M
Two 2n bit operands

Carry Propagate Adder

.@.

Final 2n bit Product

Figure 5.6: High performance multiplier.

CHAPTER 5. EXPLORING THE DESIGN SPACE 103

Multiplier
D_ecode Multiplier Drive Select Wires »
Bits (If necessary) Final
Sum Partial Final Add Product
(Carry —
Products
Propagate)

Compute Multiples . . ' o

(If needed) I—> Drive Multiple eres|—> >

Multiplicand

Time

\ 4

Figure 5.7: Multiplier timing.

Partial Product Selection and Select Wires

Each partial product is produced by a horizontal row of multiplexers which have common
select controls (the layout tool may fold the row back upon itself). Using the dot diagrams
of Chapter 2, asingle horizontal row of dots correspondsto arow of multiplexers (or AND
gates). The select controls are shared by all multiplexers used in selecting a single partial
product, and in the layout scheme adopted here, run horizontally over themultiplexers(refer
back to Chapter 4 for more a more detailed description). The select controls are composed
of recoding logic, which use various bits of the multiplier to produce the required decoded
multiplexer signals, such asselect_Mx1, select_Mx2, select_Mx3, etc., whichareinturnused
to choose a particular multiple of the multiplicand in forming a given partial product. The
decoded multiplexer signals are then fed to buffers which drive the long wires connecting
the multiplexers. The low level circuit design of the output driver for each select takes
advantage of the fact that the selects are mutually exclusive (only oneis high at any given
time) to reduce the power consumption. During a multiply operation and after the select
lines have stabilized, exactly one of the select lineswill be high. Therefore when the select
lines need to switch, only one wire will be making a high to low transition, so a single
pulldown current source can be shared by all 5wires, instead of 5 separate pulldown current
SOurces.

Figure 5.8 shows a ssmplified driver circuit using 2 select output drivers. To expand

CHAPTER 5. EXPLORING THE DESIGN SPACE 104

thisto 5 (or more) select drivers, 3 (or more) additional driver circuits would have to be
added, but they would all share the same pulldown current source shown in the figure. To

VCC

1600

select_Mx1_out

select_Mx1_in

VCS

—» select_Mx2_out

select_Mx2_in

Single Shared
Current Source
1mA
2500 VEE
VEE

Figure5.8: Dual select driver.

understand how this circuit works, consider the bottom driver in the figure. There are 4
major components. Thedriver gate, which connectsto theinput, an output pullup darlington
formed by T1,T2, and D1, an output pulldown transistor T3 and the shared current source.

When the input transitions from low to high, al the gate current flows through R1,
creating a voltage drop across R1. The output darlington voltage will be low. Thereisno
current through R2 and no voltage drop between the base and collector of T3. This makes

D1 reduces the gain of the output stage to reduce ringing

CHAPTER 5. EXPLORING THE DESIGN SPACE 105

transistor T3 look like adiode that connects the shared current source to the output, pulling
the output down very quickly, with the full force of the shared current source (remember
exactly 1 output is high at any one time).

When the input transitions from high to low, al of the gate current is steered through
R2, creating a voltage drop across R2, turning off transistor T3. At the same time thereis
no current through R1, therefore no voltage drop across R1, causing the darlington to pull
up very fast. The current through R2 also provides atrickle current through the darlington
to establish the output high voltage.

To reduce the wire delay, the voltage swing on the wires is reduced to 300mV, from
the 500mV nominal swing for the other circuits, without sacrificing noise margin. Since
exactly 1 wireis high at any given time, it can act like a reference voltage to the other 4
wires that are low (or arein transition to alow). Asaresult, much of the DC noise (such
as voltage drops on the power supply rails) on the 5 select wires becomes common mode
noise, in much the same way that DC noise becomes common mode noise for a differential
driver. This allows a somewhat reduced voltage swing without sacrificing noise margins.

In the comparisons that follow, the recoding time plus the wire delay time is assumed
to be fast enough that it is never in the critical path. Since the layout tool reports back the
actual lengths of the select wires, the power driving the wire is adjusted to assure that this
delay time.

Multiplicand and MultiplesWires

In parallel with the partial product selection, any required multiplesof the multiplicand (M)
must be computed and distributed to the partial product multiplexers. The delay can be
separated into two components :

e Hard Multiple Generation : This applies only to higher (> 3) Booth agorithms.
Based upon the full carry propagate adder described below, the delay of afull 53 bit
multiple is estimated to be 700 psec, with a power consumption of 350mW for the
3M multiple and 500mW for 5M and 7M. The area of these addersis about 0.5 mm?
for 3M, and 0.7 mm? for 5M and 7M. The reduction in the size and area for the 3M
multipleis obtained by using the method described in Chapter 3.

CHAPTER 5. EXPLORING THE DESIGN SPACE 106

e Multiple Distribution : Thisisthe wire delay due to the distribution of the bits of
the multiplicand and any required multiples. These multiples run diagonally across
the partial product multiplexers, so these wires are longer than the selection wires.
Againthewirelengths are available as output from the layout program, and the power
driving the wires can be adjusted (within reason) to give any desired wire delay.

The multiple generation and distribution is constrained to be less than 600 psec, by
adjusting the power used in driving the long wires. Thistime is determined by the largest
single transistor available in the technology (2mA), the typical wire length for multiples
in driving to the partial product generator, and the delay of a buffering gate for driving
the multiples. When a hard multiple is distributed, this constraint cannot be met (the
hard multiple takes 700 psec to produce because it requires along length carry propagate
addition), so the driving current is limited to 2 ma (largest single transistor available) per
wire and the propagation delay isincreased.

The Summation Network

Thisblock contributesthe bulk of the layout areaand power. The software layout program
described in Chapter 4 generates compl ete layout of this section, providing accurate (within
10% of SPICE) delay, power, and area estimates. In addition the lengths of the select and
multiples wires are a so computed.

Carry Propagate Addition

Since all multipliers being considered in this section are 53x53 bits, producing a 106 bit
product, a 106 bit carry propagate adder is needed. Thisadder can be considered as afixed
overhead, sinceitisthe samefor all algorithms. Such an adder has been designed and layed
out, using the modified Ling scheme presented in Chapter 3. This adder acceptstwo 106 bit
input operands and produces the high order 66 bits of the product, plus a single bit which
indicates whether the low order 40 bits of the product are exactly zero. The important
measurables for this adder are shown in Table 5.2. These adder parameters were obtained
assuming anominal -5V supply at 100° C, driving noload. Thetiminginformationis based
on SPICE simulations of the critical path using capacitances extracted from the layout.

CHAPTER 5. EXPLORING THE DESIGN SPACE 107

Area(mm?) | Delay (nsec) | Power (Watts)
1.125 860 1.13

Table 5.2: 106 Bit Carry Propagate Adder Parameters

Because the adder design was done in a standard cell manner, the wire capacitance was
increased by 50% in the simulation runs to account for possible Miller capacitance between
simultaneously switching, adjacent wires.

5.2.1 Criteriain Evaluating Multipliers

There are three important quantities that can be used to evaluate the implementation of
various multiplication algorithms.

Delay

All delays are for the entire multiply operation, not just the summation network time.

Power

The power values shown in the evaluation tables include all of the power necessary to
operate the multiplier.

Layout Area

The area includes al components of the multiplier. The area can also impact the perfor-
mance, in that larger area generally means longer wires and more wire delay.

5.2.2 Test Configurations

The evaluation of the various multiplier algorithms are based on five variations, which can
be produced by adjusting various parametersof thelayout tool. All configurationsare based
on afully parale implementation of the summation network.

CHAPTER 5. EXPLORING THE DESIGN SPACE 108

e Fastest : This variation attempts to maximize the speed of the multiplier, ignoring
areaand power, except in the way they impact the performance (for example through
wire lengths). Full use of differential wiring is used where possible to reduce the
critical path time.

e Minimum Area: Inthisvariation, all critical paths are fully powered, single ended
swings. Differential wiring is not used, with the exception that differential, level O
signals are used if no additional areaisneeded for the extrawire. This configuration
isclosetoatraditional ECL implementation, giving the minimum areaand minimum
power for afull tree ECL design.

e Minimum Width : The goa isto improve the speed of the minimum area variation
by alowing differential wiring wherever the impact on the layout areais negligible.
Differential wiring is used where possible to reduce the critical path time, as long
as the width of the routing channels (and hence the entire layout) does not increase.
The use of differentia wiring sometimes requires an extra output buffer, which
increases the height of the layout dightly, so the actual area will be a little more
than the minimum area variation. This variation is interesting in that it shows the
performance increment, with only a small increase in layout area, that is possible
with the selective use of differential wiring.

e 90% Summation Network Speed : Since the cost of the maximum possible speed
may be quite high (in terms of areaand power), an interesting configurationisonein
which the speed of the summation network is not pushed to it’s absolute maximum,
but instead is only 90% of the maximum speed. That is, the delay of the summation
network in this configuration is F%"%gﬂ.

e 75% Summation Network Speed : Similar to the 90% speed configuration, except
that the speed of the summation network is pushed only to 75% of the maximum
speed available.

All of the above configurations vary only the speed, power and area of the summation
network. Since there are other components in the complete multiplier (such as adders,
recoders, wire drivers, etc.), the actual effect on the entire system will be reduced.

CHAPTER 5. EXPLORING THE DESIGN SPACE 109

5.3 Which Algorithm?

Physically largelayoutswill have problemswith wire delays, sincethelarger the multiplier,
the longer the wires are that interconnect the various components of the multiplier. In
addition, more circuitry generally means more power consumption. An appropriate choice
of agorithm will produce as small alayout as possible, consistent with the performance
goals. Various agorithms and implementation methods are available to the designer, and a
careful evaluation of each is necessary to obtain a"good" design. Implementations of the
conventional partial product generation algorithmsdescribed in Chapter 2 will be compared
and contrasted, and some comments will be made about them. Then the implementations
of the redundant Booth 3 algorithm (also presented in Chapter 2) and an improvement to
the conventional Booth 3 agorithm will be compared to the conventional algorithms.

5.3.1 Conventional Algorithms

The conventional algorithmsto be compared are based upon 53x53 unsigned multiplication.
The resultsinclude al components of each multiplier and are are summarized in Table 5.3
and shown graphically in Figures 5.9, 5.10, and 5.11.

Comments on Conventional Algorithm Implementations

Referring to Table 5.3 it is obvious that smple multiplication is markedly inferior to the
Booth based algorithmsin all important measures. Others have reached different conclu-
sions, such as Santoro [24], Jouppi et el[13], and Adlietta et el [1], sO some explanation is
in order.

e Power - The Santoro and Jouppi implementations are based on CMOS. The power
characteristics are quite different between ECL and CMOS designs, the former being
dominated by static power, thelatter almost entirely dynamic power. Consequentially,
power consumption measurements based upon one technology probably can not be
applied directly to the other. It seems possible, however, that a CMOS multiplexer
might consume less power than a CMOS CSA, if only because the former has one
output and the latter has two, so Booth encoding may still save power.

CHAPTER 5. EXPLORING THE DESIGN SPACE

| Vaiation | Algorithm | Delay (nsec) | Area(mm?) | Power (Watts) ||

Simple 31 33.0 26.9

Fastest Booth 2 2.6 154 14.4
Booth 3 3.0 11.0 9.7

Booth 4 31 13.7 10.3

Simple 4.2 18.2 15.0

Minimum Width | Booth 2 35 9.3 7.2
Booth 3 3.7 8.0 6.1

Booth 4 3.7 10.7 7.3

Simple 47 17.1 111

Minimum Area | Booth 2 3.7 9.2 6.4
Booth 3 4.0 7.8 5.3

Booth 4 4.0 10.6 6.9

Simple 33 29.4 24.5

90% Tree Speed | Booth 2 2.8 14.3 12.9
Booth 3 3.2 104 9.0

Booth 4 3.2 12.6 9.8

Simple 3.7 24.5 20.4

75% Tree Speed | Booth 2 3.0 12.0 10.9
Booth 3 34 9.3 7.8

Booth 4 35 11.4 8.6

Table 5.3: Delay/Area/Power of Conventional Multipliers

110

111

CHAPTER 5. EXPLORING THE DESIGN SPACE

M Booth 2
L Simple

47

1.00
0.90
0.80
0.70
0.60 —
50
040 -
30
0.20 —
0.10 —
0.00 -

0.

fepaonie

Minimum 90% 75%
Speed Speed

Area

Minimum
Width

Fastest

Figure5.9: Delay of conventional algorithm implementations. Delays arein nsecs.

112

CHAPTER 5. EXPLORING THE DESIGN SPACE

a0 64 S
3 3 3 S M@Emm/:m_wmm 3 S S =

Minimum 90% 75%
Speed Speed

Area

Minimum
Width

Fastest

Figure 5.10: areaof conventional algorithm implementations. Areas are in mm2,

113

CHAPTER 5. EXPLORING THE DESIGN SPACE

" 05 a
i o o o OLO\SOH_O@>_H®_®M_ o o o o

Minimum 90% 75%

Area

Minimum
Width

Fastest

Speed

Speed

Figure 5.11: Power of conventional agorithm implementations. Power isin Watts.

CHAPTER 5. EXPLORING THE DESIGN SPACE 114

The multiplier described by Adlietta is based on an ECL implementation, but is a
gate array based design. ECL custom design allows the construction of a Booth
multiplexer using 2 current sources (one for the multiplexer, one for the emitter
follower output stage), whereas a CSA requires 4 current sources. The Booth 2
algorithm essentially replaces half of the CSAs required by simple multiplication
with an equal number of multiplexers, at a considerable savings in power. If the
gate array library doesn’'t have a 2 current source Booth multiplexer available, then
it will have to be constructed out of multiplexer and an EXCLUSIVE OR. This
would require 4 current sources, increasing the power consumption significantly and
probably removing any difference in power consumption between the two methods.

e Delay - Simple multiplication is not significantly slower than Booth based imple-
mentations. Even though there are twice as many partial products to be added, the
delay through the summation network is basically logarithmic in the number of par-
tial products, minimizing the difference. Any difference can be explained by the
replacement of the the top two layers of CSA delay with a single multiplexer delay,
the delay of aCSA and amultiplexer being comparable. Alsotheextraareaof smple
multiplication contributes to longer wires, and thus longer delays.

e Area- The Booth 2 multiplexers used in this study are 24.6x in height, compared
to 31.6u for a CSA (the widths are the same). A one for one replacement of
CSA'swith multiplexers, as happens when comparing simple multiplication to Booth
2 multiplication, should result in a modest reduction in total layout area. However,
smplemultiplication still requiresAND gatesfor the selection of the partia products.
The actual logic gate can frequently be designed into a CSA, with only a dight
increasein areaof the CSA. Thewiresdistributing the multiplicand and the multiplier
throughout thetree still require area, so the partial product selection still requiresnon-
zero layout area. The remaining area difference can be explained by level shifters
that are required for the multiplicand at % of the inputs of all of thetop level CSAs.

Santoro observes that the size of the Booth multiplexersis limited by the horizontal
wire pitch. Figure5.12 shows a possible CMOS multiplexer. This particular version
has 4 horizontal wires crossing through each row of multiplexersthat create asingle

CHAPTER 5. EXPLORING THE DESIGN SPACE 115

>t st
N2 N < K4
6@ Q Q &
Y Y Y Y
Vd Vd

Multiplicand L ’C{ [:

Bitn-1 —»—T L L‘ [: 1L c| [: Partial Product

—» Bitn

Multiplicand 1

Bit n > T T 4{[:

Figure5.12: CMOS Booth 2 multiplexer.

partial product (other designs could have from 3 to 5 horizontal wires). Assuming
5 horizontal wires per partial product, an NxN bit Booth multiplier would have %
total horizontal wires whereas simple multiplication would have N horizontal wires.
If a CSA is exactly the same size as a Booth multiplexer, then smple multiplication
would still be larger due to the N horizontal wires needed to control the AND gates
which generate the partial products.

If the multiplexers are not wire limited, it is extremely unlikely that a multiplexer
will be larger than a CSA, since the circuit is much smpler. Figures 5.2, 5.3, 5.12,
and 5.13 show designs for ECL and CMOS multiplexers and CSAs and clearly the
multiplexers are simpler than the CSAs.

The recodersthat drive the select lines which control the multiplexersor AND gates
could explain how it might be possible for ssimple multiplication to be comparable
(or even smaller) to Booth encoding in CMOS. A relatively small bipolar transistor
drives a large amount of current, so increasing the number of horizontal wires does
not increase the size of the Booth multiplexer select driverssignificantly. In contrast,

CHAPTER 5. EXPLORING THE DESIGN SPACE 116

al JW
) J o W

|

\\}

Figure 5.13: CMOS carry save adder.

CMOS will require additional large areatransistorsto drive the additional long select
wires. The increase in the number of long select wires, from N to % may increase
the area of the select generators enough to overcome the modest savings provided by
Booth encoding, if the 5 wire version of the multiplexer is used.

Returning to Table 5.3, the Booth 4 algorithm has no advantage over the Booth 3
algorithm. The reason for thisis that the savings in CSAs that result from the reduction
in partial productsis more than made up for by the extra adders required to generate the 2
additional hard multiples. The partia product select multiplexers are also almost twice the
area (80u vs 40.54 in height). Booth 4 may become more competitive if the length of the
multiplication is increased, since the area required for the hard multiple generation grows
linearly with the length, while the area in the summation network grows as the square of
the length. For lengths < 64, Booth 4 does not seem to be competitive.

In summary, only Booth 2 and Booth 3 seem to be viable algorithms. Booth 2 is
somewhat faster, but Booth 3 issmaller in areaand consumes less power.

CHAPTER 5. EXPLORING THE DESIGN SPACE 117

Delay (nsec) | Area(mm?) | Adder Power (Watts) | Driver Power | Total Power
0.2 0.53 0.50 0.76 1.26

Table 5.4: Delay/Area/Power of 55 Bit Multiple Generator, built from 14 bit Subsections

5.3.2 Partially Redundant Booth

Chapter 2 presented a new class of multiplication algorithms, combining the Booth 3
algorithm with a partially redundant representation for the hard multiples. In principle, use
of thisalgorithm should be able to approach the small layout area and power of the straight
Booth 3 agorithm, with the speed of the Booth 2 algorithm. Implementations using
this agorithm require the determination of an extra parameter, the carry interval in the
partially redundant representation of the multiples. Before comparing this algorithm with
the more conventional agorithms described above, areasonable value for this parameter is
needed. A small carry interval reducesthe length of the small adders necessary for multiple
generation, however too small an interval causes the number of CSAs (and so the power
and ared) to go up. A large interval reduces the number of CSAs required, but the delay of
the carry propagate adder generating the small multiples increases the total delay through
the multiplier.

Redundant Multiple Generation

The model for the short multiples adders will be based upon the actual implementation of
a 14 bit 3X adder. Simple modifications will be made to allow the adder length to vary.
The vital statistics for this 14 bit multiple generator, when it is used to construct a 55 bit
multiple generator, are shown in Table 5.4. The delay does not include thetimeto drivethe
long wires at the output, as this delay is accounted for separately.

Using the method described in Chapter 3, itispossibleto build short multiple generators
of up to 14 bitsusing only two stages of logic. The delay of thelonger generatorsisdightly
more than that of the shorter adders, but the delay difference can be minimized by using
more power along asingle wire that propagates an intermediate carry from the low order 8
bitsto the high order 6 bits. Although the delay isreally acontinuousfunction of thelength

CHAPTER 5. EXPLORING THE DESIGN SPACE 118

of the adder, the difference between adders of similar lengths is minimal, of the order of
50 psecs between a length 5 adder and a length 14 adder. Although this is a significant
variation in the adder times (25%), it is a very small fraction of the total multiply time
(2% or less). The power consumption per bit is also roughly constant, with the difference
between alength 5 adder and alength 14 adder being about 10mW. Since most of the power
and delay involved in the multiple generation is in driving the multiples to all the partial
product multiplexers, a more refined model will not be presented. Because the delay and
power differences between the shorter multiple generators and the longer ones are very
small, they will be ignored.

Varying thecarry interval

Tables5.5 and 5.6 showstheimplementation parametersfor the redundant Booth 3algorithm
asthecarry interval isvaried from 5 bitsto 14 bits. The resultsare aso shown graphically
in Figures5.14, 5.15, and 5.16.

Comments on theredundant Booth algorithm

Referring to Tables 5.5, 5.6 and Figures 5.14, 5.15 and 5.16 some general patterns can be
discerned. Generaly, the delay is not dependant on the carry interval. This is due to the
logarithmic nature of the delay of the summation network. There are occasional aberrations
(such asthedatafor acarry interval of 8), but these are due to fact that the layout program
happens to stumble upon a particularly good solution under some circumstances. The
area shows a more definite decrease as the carry interval isincreased, again a pretty much
expected result, since fewer CSAs and multiplexers are required. A somewhat surprising
resultisthat the power, likethedelay, ismostly independent of thecarry interval. Thereason
for thisisthat most of the additional CSAsrequired as the carry interval is decreased lie off
of the critical path, so these CSAs can be powered down significantly without increasing
the delay. In addition, the summation network has been made so fast that the total delay
is beginning to be dominated by the final carry propagate adder, and the driving of the
long wires that distribute the multiplicand and select control wires through the summation
network, not the delay of the summation network itself. It seems as though any carry

CHAPTER 5. EXPLORING THE DESIGN SPACE

119

| Vaiation | CarryInterval | Delay (nsec) | Area(mm?) | Power (Watts) |

5 2.7 16.4 12.1

6 2.8 15.8 115

7 2.7 14.9 114

8 2.6 14.0 11.7

Fastest 9 2.6 13.7 10.7
10 2.7 13.6 10.8

11 2.7 12.8 10.5

12 2.7 13.1 10.7

13 2.6 12.6 10.7

14 2.6 13.0 10.5

5 3.4 11.0 7.1

6 35 10.7 6.9

7 35 10.5 6.7

8 35 9.8 6.4

Minimum Width 9 3.3 9.8 6.9
10 35 9.5 6.4

11 3.7 9.1 6.0

12 3.6 9.4 6.2

13 3.4 9.1 6.3

14 3.6 8.9 5.8

5 4.0 10.9 6.1

6 3.8 105 6.1

7 3.9 10.2 59

8 3.6 9.7 6.3

Minimum Area 9 3.9 9.6 5.7
10 3.7 9.4 6.0

11 3.8 9.1 59

12 3.7 9.3 5.9

13 3.6 8.9 59

14 3.7 8.9 5.6

Table 5.5: Delay/Area/lPower of Redundant Booth 3 Multipliers

CHAPTER 5. EXPLORING THE DESIGN SPACE

| Vaiation | Carry Interval | Delay (nsec) | Area(mm?) | Power (Watts) ||
5 2.8 14.9 11.0
6 29 14.2 10.6
7 2.8 13.7 10.6
8 2.7 13.2 10.6
90% Tree Speed 9 28 126 9.9
10 2.8 12.6 9.7
11 2.9 12.0 95
12 2.8 12.0 94
13 2.7 11.7 95
14 2.8 12.2 9.7
5 31 12.0 8.6
6 3.2 11.8 8.3
7 31 12.0 8.8
8 3.0 12.0 9.3
75% Tree Speed 9 31 10.6 8.2
10 31 10.8 8.3
11 31 10.8 8.2
12 31 10.6 8.1
13 3.0 10.6 8.4
14 31 10.3 8.0

Table 5.6: Delay/Area/lPower of Redundant Booth 3 Multipliers (continued)

120

CHAPTER 5. EXPLORING THE DESIGN SPACE 121

4000

3500

2500

Delay ng8€€)
S

1500

500

\,/ ’\ / ’\‘/.\.\ /‘

— A\A

\A /A/. ‘ A\A /A
\. /'/ \./I
" Fastest

—L—— Minimum Width

*

Minimum Power

—0—— 90% Speed

A

75% Speed

5 6 7 8 9 10 11 12 13 14
Carry Interva

Figure5.14: Delay of redundant Booth 3 implementations.

CHAPTER 5. EXPLORING THE DESIGN SPACE 122

18.00

16.00

14.00

12.00

6.00

4.00

2.00

0.00

" Fastest

—L—— Minimum Width

* Minimum Power

——— 90% Speed

A—— 75% Speed

| | | | | | | | | |

5 6 7 8 9 10 11 12 13 14
Carry Interva

Figure5.15: Areaof redundant Booth 3 implementations.

CHAPTER 5. EXPLORING THE DESIGN SPACE

14.00

12.00

10.00

Power (Watts)

4.00

2.00

0.00

123

" Fastest

——— Minimum Width

¢ Minimum Power

——— 90% Speed

A—— 75% Speed

5 6 7 8 9 10 11 12 13
Carry Interval

Figure 5.16: Power of redundant Booth 3 implementations.

14

CHAPTER 5. EXPLORING THE DESIGN SPACE 124

Bits | Arrival Time
0-14 200 psec
15-36 | 400 psec
37-54 700 psec

Table 5.7: Improved Booth 3 - Partial Product Bit Delays

interval between 10 and 14 are about equally acceptable.

There is no indication that carry interval values that are not relatively primeto 3 are
any worse than any other carry interval, as hinted at towards the end of Chapter 2. This
is because this effect is buried by other effects, such as wire delays, asymmetric input
delays on the CSASs, the logarithmic nature of the delay of the summation network, and the
optimization efforts of the layout program.

5.3.3 Improved Booth 3

To illustrate the versatility of the layout program, a different kind of optimization, based
upon the Booth 3 agorithm is also presented. Normally, the bits of the "hard multiple"
are assumed to be available at about the same time, as would be the case (approximately)
with a carry lookahead based hard multiple generator. That is, bit O of the hard multipleis
assumed to be avail able at about the sametime asthe highest order bit. A multiple generator
based upon aripple carry adder would not have a uniform arrival time, but instead the bits
of lower significance would be available earlier than bits of high significance. From the
point of view of the summation network in a multiplier, parts of a single partial product
would be available at different times. A full ripple carry adder is far too sow to usein a
large multiplier, instead the model used here is based on a carry lookahead adder, where
low order bitswhich require few levels of lookahead are available early, and higher order
bitsarelater, dueto additional |evelsof lookahead and longer wires. The assumed delay for
various bits of an adder which multipliesby 3 is shown in Table 5.7. Taking advantage of
the differing arrival times of the hard multiple would be difficult using a conventional tree
approach, such as a Wallace tree or a 4-2 tree, but the layout program can take advantage
of early arriving bits to reduce the power and area of the summation network.

CHAPTER 5. EXPLORING THE DESIGN SPACE 125

54 Comparing the Algorithms

Figures5.17, 5.18, and 5.19 compare the implementation delay, power and area of the two
conventional agorithms (Booth 2 and Booth 3) with the redundant Booth 3 and improved
Booth 3 algorithm. The carry interval for the redundant Booth 3 algorithm was chosen to
be 14, mainly because that was the size used in the test implementation to be described
below. Any interval between 10 and 14 could have been chosen with similar results. Like
the earlier comparisons, the basic multiplier is a53x53 bit integer multiply. The redundant
Booth 3 algorithmisessentially the same speed as the Booth 2 algorithm, yet makes modest
savings in both area and power consumption. The improved Booth 3 agorithm has better
power and areanumbersthan the conventional Booth 3 algorithm, but isroughly comparable
in performance. Because of the early arrival of certain bitsof the partial products, lessuseis
made of differential wiring to maintain the performance, which reduces the area and power
reguirements.

5.5 Fabrication

In order provethe design flow, atest multiplier wasfabricated in the experimental BICMOS
process described previously. The implementation described hereis that of a53x53 integer
multiplier producing a 106 bit product. Dueto pad and arealimitations, only the high order
66 bitsof the product are computed, with thelow order 40 bits encoded into asingle"sticky"
bit, using the method described in Appendix B.1. The algorithm used was the redundant
Booth 3 method described in Chapter 2, with 14 bit small adders. CMOS transistors are
used only as capacitors on internal voltage references.

After the entire multiplier was assembled, and the final design rule checks performed,
anet list of the entire multiplier was extracted from the layout and run through a custom
designed ssimulator built upon the commercia smulator LSIM (from Mentor Graphics).
The smulator works at the transistor and resistor level, and is approximately 3 orders of
magnitude faster than HSPICE at circuit simulation. It is not quite as accurate, and also
provides no timing information. Approximately 3000 carefully selected vectors were run
through the smulated multiplier. The simulation run takes about 10 hours of computetime,

126

Improved 3.4k

-14

SV T S I] -

Booth

Speed

75 %

Speed

90 %

CHAPTER 5. EXPLORING THE DESIGN SPACE

1.00
0.90
0.80
0.70

o

©

o
fe

(@} Q
Te) <
o

Pd AR

0.30

20 H
0.10 —
0.00

0.

Minimum
Area

Minimum
Width

Figure5.17: Delay comparison of multiplication algorithms. Delays arein nsecs.

127

CHAPTER 5. EXPLORING THE DESIGN SPACE

14.3

B Booth 3 Improved

Booth 3-14

M Booth 2
O Booth 3

[I I I | I I | I |

o o Q o Q Q Q Q o o o

S o) o] ~ o) 0 i ™ N = S

1 o o o o o o o o o o
201V OAIRRY

Speed

75%
Speed

90%

Minimum
Area

Minimum
Width

Fastest

Figure5.18: Areacomparison of multiplication algorithms. Areas arein mm?.

128

CHAPTER 5. EXPLORING THE DESIGN SPACE

12.9

M Booth 2

Booth 3-14

O Booth 3

B Booth3 Improved

10.5

LR S

m............
LI IMMHHIHIHIHINITTSHRKR

1

1.00 —idd

0.90 -+

0.80 -

0.70

0.30
0.20
0.10 —
0.00

o o
Iy g

0.60 —

BMOd SR PY

Minimum 90% 75%
Speed Speed

Area

Minimum
Width

Fastest

Figure 5.19: Power comparison of multiplication algorithms. Power isin Watts.

CHAPTER 5. EXPLORING THE DESIGN SPACE 129

since the final multiplier has about 60,000 bipolar transistors.

The design goal for the multiplier is a propagation delay of 3.5 nsec (typical, 4.4 nsec
worst case) at a power consumption of 4.5 Watts with asingle 5V supply. The delay goal
is dictated by limitationsin the power dissipation of the package. The final layout size of
the multiplier is4 mm by 2.5 mm (excluding test and 1/O circuitry). The floor plan of the
chip is shown in Figure 5.20, and a photograph of the chip is shown in Figure 5.21.

55.1 Fabrication Results

After the design was taped out (December, 1992), a bug was found in the power ramping
section of the summation network layout tool. This bug caused all output driversin the
summation network to be ramped down in power, even those drivers that drove wires
along critical paths. Because the transistor level circuit smulator failed to provide any
kind of timing information, this error was alowed to propagate to the final design. After
reexamining the critical paths, it was determined that the multiplier would be slower and
consume less power than expected (5 nsec delay and about 3.5 Watts).

Unfortunately the project driving the development of the fabrication line was cancelled
before the yield problems of the fab were solved. Three wafers were obtained, in May
1993, and some parts on one wafer showed some functionality, but no completely working
multipliers were obtained.

5.6 Comparison with Other Implementations

Comparisons with other implementations described in the literatureisinformative, because
it providesreference pointsin evaluating aparticular design. However such comparisonsare
less than straightforward, due to the widely varying technologies available. For example,
there are no full 53x53, ECL multipliers described in the literature, so comparable, rather
than identical, designs must be used instead.

Table 5.8 summarizesthe important parametersfor the multiplier design described here,
and also for comparable designs described by Adiletta et al.[1], Mori et al. [19], Goto et
al.[11], and Elkind et al.[8]. The table shows that the ECL based design described hereis

T

on Networke B Fatsishseeett

sz, soudnt SEESTENE ookt
(RS- FREF b A
4
b e 9. P
P .,:!zgtr
LT

e i S En ML e e e pian
rlyrenwin iy

Figure 5.20: Floor plan of multiplier chip

~mms 0009y yloog

=T

FOVdS NOISFA FHL ONIHO IdX3 G 431dVHD

O€T

CHAPTER 5. EXPLORING THE DESIGN SPACE 131

Figure 5.21: Photo of 53x53 multiplier chip. Die size is 5mm x 3mm.

CHAPTER 5. EXPLORING THE DESIGN SPACE 132

| | Thisthesis | Adiletta | Mori | Goto | Elkind |
Technology ECL ECL CMOS CMOS ECL
Multiplier Size 53x53 32x32 54x54 54x54 56x56
Design Style Custom | Gatearray | Custom | Custom Custom
Type Full Tree | Full Tree | Full Tree | Full Tree | Iterative
Lithography 0.6p 24 0.5u 0.8 24
Area 10mm? 96mm? | 12.5mm? | 12.9mm? | 13.7mm?
22.4 nsec

Delay 3.5 nsec 9 nsec 10nsec | 13nsec | 14clocks

@40MHz | @600MHz
Power 45W 309W 087W | 0.875W | Not Stated
Power x Delay 15.7 278 8.7 114

Table 5.8: Multiplier Designs

faster than comparable CMOS designs and also competitivein area. ECL designs consume
high power, so careful circuit designisnecessary to minimizethe power consumption. With
such care, the power-delay product of ECL designs can be less than a factor of two larger
than CMOS designs.

5.7 Improvements

There are a couple of simple improvements that could be made to the multiplier designs
presented in this chapter. First, because of limitationsin the tools, only a 2 layer channel
router was available. A good 3 layer router would have reduced the layout area of all the
multipliers by 10-20%. Second, the power consumption could be reduced by the addition
of a second power supply, with a voltage of -2.5. Many output emitter followers could be
terminated to this supply rather than the -5V supply, reducing the power consumption in
thesedriversby 50%. Ingeneral about % of the current in the designs could be terminated to
this reduced voltage. Thiswould reduce the total power consumption of al of the designs
by about 15%.

CHAPTER 5. EXPLORING THE DESIGN SPACE 133

5.8 Delay and Wires

Finally, in order to explore the effects of wires and asymmetric input delays in multiplier
design, a summation network for a special Booth 3-14 multiplier was produced by the
layout tool. All power ramping and the use of differential wiring was turned off in order
to preserve the critical paths through the summation network and make al the CSAsin the
summation network identical (except for any needed level shifting).

The critical path, through the resulting summation network, had adelay of 2.0 nsec and
went through 9 levels of CSAs. This comparesto 8 levels of CSAsif straight Wallace tree
wiring is used. Of the total delay, 1.25 nsecs is used just for driving the wires between
CSAs, leaving only 750 psec explicitly contributed by the intrinsic delays of the CSAs.
Even though the wire component is large, counting levels of CSAs might still be useful in
estimating performance if all of the wires were about the same length. Then the average
wire delay (in this case 125 psec) could just be added to the CSA delay, becoming part of
the delay associated with the "gate delay” of the CSA. In actuality, the wire delaysalong the
critical path varied wildly, from 7 psec to 331 psec, with a standard deviation of 119 psec.
Thiswould seem to indicate that the efforts of the layout tool to take into consideration wire
length when it places CSAs and multiplexers, is valuable in improving the performance of
the summation network.

Another indication that considering wire and asymmetric input delays is important in
improving the performance, can be seen from looking at other non-critical paths in the
summation network. Some delay paths go through 11 CSA levels, and yet are faster than
thecritical path of 9 CSA levels. Thisisnot even the most extreme case. The 11 level path
has a delay of 1.4 nsec, yet is faster than another path that goes through only 8 levels (in
1.85 nsec). The path through more CSA levelsisfaster because of wires and a so because
it goes through faster inputs on the CSAs. Wires and asymmetric input delays matter, and
need to be taken into consideration as the summation network is designed.

CHAPTER 5. EXPLORING THE DESIGN SPACE 134

5.9 Summary

Of the conventional partial product generation algorithms considered in this chapter, the
Booth 3 algorithm is the most efficient in power and area, but is slower due to the need
for an expensive carry propagate addition when computing "hard" multiples. The Booth 2
algorithm is the fastest, but is also quite power and area hungry. Other conventional
algorithms, such as Booth 4 and simple multiplication, do not seem to be competitive with
thefirst two.

I mplementations using the redundant Booth 3 algorithm compare quite favorably with
the conventional algorithms. The fastest version of this algorithm is as fast as the Booth 2
algorithm, but provides modest decreases in both power (~ 25%) and area (~ 15%). The
redundant Booth algorithm also compares favorably with the conventional (nonredundant)
Booth 3 in both area and power, but isfaster. Serious consideration should be given to this
class of algorithms.

Wires and input delay variations are important when designing summation networks, if
the highest possible performanceis desired. Ignoring these effects can lead to designs that
arenot asfast as they could be.

Chapter 6
Conclusions

The primary objective of thisthesis has been to present anew type of partial product gener-
ation algorithm (Redundant Booth), to reduce the implementation to practice, and to show
through simulation and design that thisalgorithm is competitive with other more commonly
used algorithms when used for high performance implementations. Modest improvements
in area (about 15%) and power (about 25%) over more conventional algorithms have been
shown using this algorithm. Although no performance increment has been demonstrated,
thisisnot terribly surprising given the logarithmic nature of the summation network which
adds the partial products.

Secondarily, thisthesis has shown that algorithms based upon the Booth partial product
method are distinctly superior in power and area when compared to non-Booth encoded
methods. Thisresult must be used carefully if applied to other technologies, since different
trade-offs may apply. Partial product methods higher than Booth 3 do not seem to be
worthwhile, since the savings due to the reduction of the partial products do not seem to
justify the extrahardwarerequired for the generation and distribution of the"hard multiples’.
This conclusion may not apply for multiplication lengths larger than 64 bits. The reason for
thisis that the "hard multiple” logic increases linearly with the multiplication length, but
the summation network hardware increases with the square of the multiplication length.

The use of carry save addersin aWallacetree (or smilar configuration) isso very fast at
summing partial products, that it seems that thereisvery little performanceto be gained by
trying to optimize the architecture of this component further. The delay effects of the other

135

CHAPTER 6. CONCLUSIONS 136

pieces of a multiplier are at least as important as the summation network in determining
the final performance. Figure 6.1 shows the breakdown of delays of a multiplier using the
redundant Booth 3 algorithm, with 14 bit small adders. The summation network islessthan

Fina CPA
30%

Summation
Network
49%

Drive Multiple
Wires
0,
14% Compute
Multiple 7%

Figure 6.1: Delay components of Booth 3-14 multiplier.

1 of thetotal delay. Thisreducesthe performancesensitivity of theentiremultiplier to small
changesin the summation network delay. Asaresult, somewhat slower, but more compact
structures (such as linear arrays or hybrid tree/array structures) may be competitive with
the faster tree approaches. Significant improvementsin multiplier performance will come
only from using faster circuits, or by using a completely different approach.

The summation network and partial product generation |ogic consume most of the power
and area of a multiplier, so there may be more opportunities for improving multipliers by
optimizing summation networks to try to minimize these factors. Reducing the number of
partial products and creating efficient ways of driving the long wires needed in controlling
and providing multiplesto the partial product generators are areas where further work may
prove fruitful.

Since wire delays are a substantial fraction of the total delay in both the summation

CHAPTER 6. CONCLUSIONS 137

network and the carry propagate adder, efforts to minimize the area may aso improve the
performance. Configuringthe CSAsin alinear array arrangement is smaller and has shorter
wires than tree configurations. In the future, if wires become relatively more expensive,
such linear arrays may become competitive with tree approaches. At the present time trees
still seem to be faster.

Finally, good low level circuit design seems to be very important in producing good
multiplier designs. A modest improvement in the design of CSAsisimportant, because so
many of them are required. From 900 to 2500 carry save adders were used in the designs
presented inthisthesis. Thisthesis has presented a power efficient circuit which can be used
to drive a group of long wires, when it is known that exactly 1 of the wires can be high at
any time. This single circuit reduces the power of the entire multiplier by about 8%, which
seems modest, but it isonly asingle circuit. Another example where concentrating on the
circuits can pay off isin power ramping non-critical paths, which saves about 30% of the
power at virtually no performance cost. These examplesillustrate that good circuit design,
aswell asgood architectural decisions, are necessary if the best performing multipliersare
to be built.

Appendix A
Sign Extension in Booth Multipliers

This appendix shows the sign extension constants that are needed when using Booth's
multiplication algorithm are computed. The method will be illustrated for the 16x16 bit
Booth 2 multiplication example given in Chapter 2. Oncethe basic techniqueis understood
it iseasily adapted to the higher Booth agorithms and also to the redundant Booth method
of partial product generation. The example will be that of an unsigned multiplication, but
thefinal section of this appendix will discuss the modifications that are required for signed
arithmetic.

A.1 Sign Extension for Unsigned Multiplication

The partia products for the 16x16 multiply example, assuming that all partial products
are positive, are shown in Figure A.1. Each partial product, except for the bottom one, is
17 bits long, since numbers as large as 2 times the multiplicand must be dealt with. The
bottom partial product is 16 bitslong, since the multiplier must be padded with 2 zeroes to
guarantee a positive result. Figure A.2 shows the partial products if they al happen to be
negative. Using 2's complement representation, every bit of the negated partial products
is complemented, including any leading zeroes, and 1 is added at the least significant bit.
The bottom partial product is never negated, because the O padding assuresthat it is always
positive. The triangle of 1's on the left hand side can be summed to produce Figure A.3,
which is exactly equivalent to the situation shown in Figure A.2. Now, suppose that a

138

139

APPENDIX A. SIGN EXTENSION IN BOOTH MULTIPLIERS

M Ss5_ oo _0w m m Ss5_ oo _0w W
cleeeecoeeeeoeeeeee e eco cleeceeeeceeeeeeeeeeco
~ "~~~ Y~ 4 ~— "~~~

[3)

S

S
° ° Q o — °
° ° ® ® °
o0 ° 5 oj® —| °
o0 ° o o |® °
eoeo ° o o|®|® —| °
eooe ° W oo o °
L) ° ‘D o|o|o|o —| °
eoocoy ° 8 olojojo] y °
LI) o < oo o oo —| o
o000y ° = o|oo|o|o] 'y °
e00o0o0o0 ° = o|o|o|oee - °
e00o0o0o0y °] ofo|ofo|oio] 'y °
eecococoo0 ° ® o (o|o/o|oo)e — °
IR NNENNE ° = o(o|oo|o(o|jo] vy °
0000000 o ¢ _— a o000 (o(ooe —| °

ol |2 =
 FENENN NN B EEREHEEEE = o|o|o|o/oo(oe] x | o
e00000o000 B EEBEE R = o |o|o|o|o|o|ooe °
e0000000 B REEEHEEEE ~ —|o|o|o|o|o|o|o|o °
e000000o0 o |2 HENREE P~ —|o|o|o|o|o|o|o|o °
eee0o0ocoo0 ® (O NAE 3 “|-|o|o|o|o|o|o|o °
e00o00o0o0 ° Mm % —|-|o|o|o|o|o|o|o °
e00o0o0o0 ® °l%5salalalgaleln = “|—|-|o|o|o|o|o|o °
o0 0000 [] m.‘MUr00001111 o) |- |o|o|o|o|o|e)
eco0o0o0 e (£|3 © ||| |o|o|o|o|o °
eeoceoe o | — |||~ |o|o|0|0|0 °
eooo ° —i ||| (o000 °
eooo ° < ||| (o000 °
o000 [o A ||| o]0 [
[2 N) [] > Al |00 |® []
o0 [n|uv Al ||| |O|® []
[I] [] _I_l Al |A|A|A || |O®|O® []

+ +

Figure A.2: 16 bit Booth 2 multiplication with negative partial products.

APPENDIX A. SIGN EXTENSION IN BOOTH MULTIPLIERS 140

0
®|Lsb
|l 1eo9o0o0e0000e000000000 °
[loeeeeeeeessscssssce |1 °
[Lloeeoececsscssssscss |i<—/ .
[l-eeeeeeeessscesseseoesd |l«————— —— °
[lneoeeeeeecsscsssscoe E‘ﬂ oh"
[loeeeeeeeecescsssssos |« o |
[loeeeeeeeecsscesssosos |l« oit
Deeeececececesssosssss i« o
oooooooooooooooo|\|i< o:
@ ¢
+ o T
0000000000000 0000000000000000O0CO0CO {o
°
°
lMsb
0
0

Figure A.3: Negative partial products with summed sign extension.

particular partial product turns out to not be negative. The leading string of ones in that
particular partial product can be converted back to aleading of zeroes, by adding asingle
1 at the least significant bit of the string. Referring back to the selection table shown in
Figure A.1, apartial product is positive only if the most significant bit of the select bitsfor
that partial product is0. Additionally, a 1 is added into the least significant bit of a partial
product only if it isnegative. Figure A.4 illustratesthis configuration. The S bits represent
the 1's that are needed to clear the sign extension bits for positive partia products, and the
Shitsrepresent the 1's that are added at the least significant bit of each partial product if it
IS negative.

A.1.1 Reducingthe Height

Finally, the height (maximum number of items to be added in any one column) of the dot
diagram in Figure A.4 can be reduced by one by combining the S term of the top partial
product with the two leading ones of the same top partial product, which gives the final
result, shown in Figure A.5 (thisisthe same as Figure 2.4).

APPENDIX A. SIGN EXTENSION IN BOOTH MULTIPLIERS

S

I_M\I_M\

\{

S

|

I_M\I_M\

1100000000006 00000
MR
l[Seeooeoe0o0e00e0e000000000 [S
1[Se0000000000000000 |[Sje———————
XXX XX E‘ﬂ
i1[Seeoee0oo000e000000000 0 [S«
i1[Seeoeo0o000e000000000 0 [S«
S00000000000000000 |Siw
oooooooooooooooo|\|§<
+
0000000000000 0000000000000000000
Partial Product Selection Tabl
Multiplier Bits Selection S =0 if partial product i |s positive
000 +0 (top 4 entries from table)
001 + Multiplicand S = 1 if partial product is negative
010 + Multiplicand (bottom 4 entries from table)
011 + 2 x Multiplicand
100 -2 X Multiplicand
101 - Multiplicand
110 - Multiplicand
111 -0
Figure A.4: Complete 16 bit Booth 2 multiplication.
SSSeeeeeeeceeeceeoe
1Seoeeoeocee0e0o0000000000
l[Seeoeoo0oo0e00e0e0e0e0000000 |S
l[Seeooeo0oo00e0e00e000000000 |S
XX XXX XX E‘ﬂ
i1[Seeoee0oo000e000000000 0 [S«
i1[Secoeo0o000e000000000 0 [S«
S00000000000000000 |Siw
oooooooooooooooo|\|§<
+
0000000000000 0000000000000000000

Partial Product Selection Tabl

Multiplier Bits Selection
000 +0
001 + Multiplicand
010 + Multiplicand
011 + 2 x Multiplicand

100 -2 x Multiplicand
101 - Multiplicand
110 - Multiplicand

111

-0

S =0 if partial product i |s positive
(top 4 entries from table)

S =1 if partial product is negative
(bottom 4 entries from table)

oo|oooooooooooooooo|o

\{

Figure A.5: Complete 16 bit Booth 2 multiplication with height reduction.

oo|oooooooooooooooo|o

141

Lsb

~ToTToT T T e

Msb

Lsb

~ToTToT T T e

Msb

APPENDIX A. SIGN EXTENSION IN BOOTH MULTIPLIERS 142

A.2 Signed Multiplication

The following modifications are necessary for 2's complement, signed multiplication.

e The most significant partial product (shown at the bottom in al of the preceding
figures), which is necessary to guarantee a positive result, is not needed for signed
multiplication. All that is required is to sign extend the multiplier to fill out the
bits used in selecting the most significant partial product. For the sample 16x16
multiplier, this means that one partial product can be eliminated.

e When :=Multiplicand (entries 1,2,5 and 6 from the partial product selection table) is
selected, the 17 bit section of the effected partial product isfilled with asign extended
copy of the multiplicand. This sign extension occurs before any complementing that
IS necessary to obtain —Multiplicand.

e Theleading 1 strings, created by assuming that all partial productswere negative, are
cleared in each partia product under a dightly different condition. The leading 1's
for a particular partial product are cleared when that partial product is positive. For
signed multiplication this occurs when the multiplicand is positive and the multiplier
select bits chooses a positive multiple, and al so when the multiplicand is negative and
the multiplier select bits choose a negative multiple. A smple EXCLUSIVE-NOR
between the sign bit of the multiplicand and the high order bit of the partial product
selection bitsin the multiplier generates the one to be added to clear the leading 1's
correctly.

The complete 16x16 signed multiplier dot diagram is shown in Figure A.6

APPENDIX A. SIGN EXTENSION IN BOOTH MULTIPLIERS 143

+

0
®(Lsb
EEE0000000000600600000 °
l1IE00 0000000000000 0F0 S (]
AR XXX XXX XXX |§<—/ °
IEe0oo0o000000006000000 |S °
MR XXX XX E‘ﬂ o ¥
lFe0o0o00000000000000 [S« o |
l1Ee0o000000000000000 [S« o !
[Feooeeooo0oo00000000000 [S« o
B of |
@ ¢
OO0 0000000000000 000000060000000000 o
[]
Partial Product Selection Tabl S =0 if partial product is positive PY
Multiplier Bits Selection (top 4 entries from table) °
000 +0 S = 1if partial product is negative ® | Msb
001 + Multiplicand (bottom 4 entries from table) —
010 + Multiplicand
011 +2 x Multiplicand E = 1 if multiplicand is positive and partial product is
— positive, or if multiplicand is negative and partial
100 -2 X Multiplicand product is negative or if partial product is +0.
101 . Mult!pl!cand E = 0 if multiplicand is positive and partial product is
110 - Multiplicand negative, or if multiplicand is negative and partial
111 -0 product is positive or if partial product is -0.

Figure A.6: Complete signed 16 bit Booth 2 multiplication.

Appendix B

Efficient Sticky Bit Computation

B.1 Rounding

Thematerial in the preceding chaptersof thisthes s have dealt with methodsand algorithms
for implementing integer multiplication. Chapter 5 briefly explained the format of IEEE
double precision floating point numbers. To convert an integer multiplier into a floating
point multiplier requires 2 modifications to the multiplication hardware :

e Exponent adder - Thisinvolves a short length (12 bits or less) adder.

¢ Rounding logic - The rounding logic accepts the 106 bit integer product and uses
the low order 53 hits of the product to dightly modify the high order 53 bits of the
product, which then becomes the final 53 bit fraction portion of the product.

The actual rounding processis quite involved, and methods for high speed rounding can be
found in Santoro, Bewick, and Horowitz[23]. The purpose of this appendix isto discuss an
efficient method for computing the"sticky bit" whichisrequired for correctimplementation
of the IEEE round to nearest rounding mode, and is also required for computation of the
|EEE "exact" statussignal.

144

APPENDIX B. EFFICIENT STICKY BIT COMPUTATION 145

B.2 What'sa Sticky Bit?

The sticky bit is a status bit that is derived from the low order bits of the final 106 bit
product. The sticky bit ishigh if every bit of the low order bits of the 106 bit final product
is zero. The actual number of bits involved in the sticky computation can depend on the
rounding mode, and also can depend on whether the high order bit of the 106 bit product
isa"1". Whatever the precise definition, the value of the sticky bit is based upon some
number of low order product bits that need to be tested to determine if they are all zero.
For |EEE double precision numbers, the number of low order bits that need to be tested is
in the vicinity of 50 or so. The sticky bit, then, reducesto alarge length zero detect.

B.3 Waysof Computing the Sticky

The obvious method of computing the sticky bit iswith a large fan-in OR gate on the low
order bits of the product. This method has the disadvantage that the sticky bit takes along
time to compute because the low order bits of the product must be available and then must
propagate through alarge fan-in OR gate. Because the largest practical OR gate that can be
built with commonly available technology islimited to 4 or 5 inputs, the sticky bit must be
created through a number of smaller length OR gateswired in series. This placesthe sticky
bit squarely in the critical path of the multiplier. High speed implementations compute the
final product using a 106 bit carry propagate adder, but thelow order bits of the result affect
high order bits of theresult only through carries propagated into the high order bits, and the
value of the sticky bit. It seems very inefficient to actually compute the low order product
bits, determine the sticky, and then throw the low order product bits away.

To remove the sticky bit from the critical path of the multiplier, different methods may
be used. One method involves determining the number of trailing zeros in the two input
operands to the multiplier. 1t can be proven that the number of trailing zerosin the product
is exactly equal to the sum of the number of trailing zeros in each input operand. The
sticky bit can then be determined by checking to see if the trailing zero sum is greater than
or equal to the number of low order bits involved in the sticky computation. If true, then
the sticky bit will be a 1, otherwise it will be 0. Notice that this method doesn’t require

APPENDIX B. EFFICIENT STICKY BIT COMPUTATION 146

the actual low order product bits, just the input operands, so the determination can occur
in parallel with the actual multiply operation, removing the sticky computation from the
critical path. The disadvantage of this method is that significant extra hardwareis required.
This hardwareincludes 2 long length priority encodersto count the number of trailing zeros
in the input operands, asmall length adder, and a small length comparator. Some hardware
is eliminated, though, in that the actual low order bits of the product are no longer needed,
so part of the carry propagate adder hardware can be eliminated.

The Santoro rounding paper describesavery clever method of sticky computation which
involves examining the low order bits of the product while it is still in a redundant form,
i.e. before the carry propagate add which computes the final product. If al of the low
order bits of the redundant form are zero, then the sticky bit must be 1, else it must be 0.
This overlaps the sticky computation with the final carry propagate add which computes
the product, removing the sticky from the critical path. Unfortunately, this method only
works for non-Booth encoded multipliers, a significant disadvantage given the results of
Chapter 5. Like the previous method, this scheme also avoids the actual computation of
the low order bits, which provides hardware savings in the final carry propagate adde.

B.4 AnImproved Method

The improved sticky method described in this appendix was inspired by the Santoro sticky
scheme. While not quite as efficient as the Santoro method, the improved method also
works for Booth encoded multipliers. A small amount of extra hardware is required,
however the extra hardware requirement is significantly reduced if this method is used
in conjunction with the redundant Booth multiplication algorithm described in Chapter 2.
Like the previous methods, direct computation of the low order product bits is avoided,
providing hardware savings in the carry propagate adder.

The idea is to inject the constant -1 into the multiplier summation network which is
responsible for summing the partial products. That isthe summation network computesthe
value (operand 1) x (operand 2) - 1, instead of (operand 1) x (operand 2). The proper result
is then obtained by modifying the final carry propagate add so that it computes A+B+1
instead of A+B. Thisis easily accomplished by just forcing the carry-in to the adder to 1.

APPENDIX B. EFFICIENT STICKY BIT COMPUTATION 147

It will be shown that a group of low order result bitswill be all zerosif and only if :

e The carry-in of 1 is propagated from the lowest order bit across all low order bits
involved in the sticky bit computation AND

e A carry is not generated anywhere by the low order bits involved in the sticky
computation.

Using the terminology of Chapter 3, these two conditions can be stated in a more precise
manner. Assume that the number of low order bitsinvolved in the sticky computationis n.
Then the sticky bit, ST, is:

STh = S152..- 9% (B.1)
Wheres,_; ...S arethelow order product bits. The conjectureisthat :
STh = pi'g " (B2

Proof: By induction n, the number of bits involved in the sticky computation. For n=1,
Equation 3.1 gives 5, and with acarry-in of 1, s, becomes :

S = bbbl

= a Db
From Equation B.1 the sticky bit, STy, is:
STy, = %
= b hbo (B.3)

This is the same as Equation 3.6 which defines p¥,. To alow the use for general po, that
iswhere po is computed as either p*; (EXCLUSIVE-OR) or p§ (OR), po must be ANDed
with theinversion of gy :

STo = adb
= Po%

APPENDIX B. EFFICIENT STICKY BIT COMPUTATION 148

This establishes the result for n=1. To prove for n bits, the result is assumed to be true for
n-1 bits, and then shown to be truefor n bits. From Equation B.1 :

STn — HSTn_l (B-4)
From Equation 3.1:

S-1 = &-1Pbh_1BCra
S-1 = (Pn-10n-1) B Cn-1 (B.5)

Wherec,_; isthecarry-intobit n-1. Equations 3.7, 3.8, and 3.9 givec,_;, andsincecy = 1,
Cn—1 Can be written as

Cro1=05 2 +Pp - (B.6)

Substituting Equations B.5 and B.6 into Equation B.4 gives:

STh = [(Pn-1Gn-1) & (95 >+ Pg~2)] SThs

The induction hypothesisis :
STh1= DS‘ZW

When thisis substituted for ST,,_; it gives:

(Po-1Tn1) & (952 + 5 2)] (P320572)
Pr—10n-1(95 2+ PS2) + P10z (952 + P§2)] (PS 205 2)

—1 N=2\/n—2

o1 + (o1 + On-1)(952)(P52)] (5205 2)

S-I-n -

Which completes the proof by induction.
The actual sticky bit computation can be simplified even further if the individual bit

propagates,p, are generated using the EXCLUSIVE-OR form, py. Then the gi~* term

APPENDIX B. EFFICIENT STICKY BIT COMPUTATION 149

can be dropped, because p)~* and gj~* are mutually exclusive. If a carry is propagated
across the entire group of low order bits, no carry can be generated in those bits. Then ST,
becomes :

n—1

STh = P

B.5 The-1 Constant

The -1 constant that is required to be added into the summation network is a full length
(106 bit) string of ones, assuming two’s complement representation. For Booth encoded
multipliers, thereisusually aconstant that must be added for sign extension reasons, which
is non-zero only beginning at about bit 53. Therefore 53 extra ones's must be added into
the summation network. The hardware requirement for this is about the same as 53 half
adders. Since the actual summation network consists of 1000 or more carry save adders,
each of which is about twice as complex as a single half adder, the extra hardware can be
seen to be quite small. The carry generate and carry propagate signals are already required
to propagate carries from the low order product bits to the high order bits. Elimination of
the summation hardware from the low order bits of the carry propagate adder saves about
the same amount of hardware, so there is approximately no net change in the hardware
requirements. However the sticky bit has been eliminated from the critical path.

This sticky method is particularly efficient when combined with the redundant Booth
algorithm described in Chapter 2. This is because of the existence of the Compensation
Constant which already must be added into the summation network. This compensation
constant isguaranteed to havealin abit position that isabout the length of the small adders
used in the hard multiple generator. Thisis usually in the range of 8-14 bits. Therefore
at most 8-14 extra half adders will be needed to add the -1 constant into the summation
network. Eliminating thecomputation of thelow order summation bitssavesmorehardware
than this, giving a net reduction in the total hardware regquirements.

Appendix C
Negative Logic Adders

The purpose of thisappendix isto provideaproof of Theorem 1 of Chapter 3. Althoughthere
are other ways of proving this particular theorem, the proof illustrates the ssimple manner
in which many of the relationships used in Chapter 3 can be proven using mathematical
induction. It is also possible to prove the correctness of the algorithms presented in
Chapter 2, by induction on the number of "digits' in the multiplier. A digit is a single
group of bits from the multiplier which are recoded using Booth's algorithm and then used
to select a particular partial product.

Theorem 1 Let A and B be positive logic binary numbers, each n bits long, and ¢, be a
single carry bit. Let Sbe the n bit sum of A, B, and ¢y, and let ¢, be the carry out from the
summation. That is:

sum sum

n sum
"¢, +S = A+BF

Then:

n __sum —sum _ sum ___
2''ch+S = A+B+ T

Proof: (by induction on n, the length of the operands):
The case n=0 gives (using equations 3.1 and 3.2):

2.1 % = 2 (@bot @+ boto) o+ (B0 bo Q)
2-[(20bo) (@) (Boco)] + (3@ b 4)

150

APPENDIX C. NEGATIVE LOGIC ADDERS

151

To prove by induction on n (the length of the A and B operands), the theorem isassumed

for al operands of length n-1, and with this assumption it is proven to be true for operands

of length n. Proceeding:

N sum
2".¢c, + S

n — s V)
2" {EH bn—l + & -1Ch-1 + bn—l Cn—l} +
2" [&ibn1 + F-1Cit + Bo1 G

sum

T 2n—1

sum n-2 ‘

“@h-1 Db e + Z§ 2
k=0

2". [a_l bho1+ @&—1Ch1 + bnoa Cn—l}

sum

+ 2t (B @ by T)

sum
+ Cn—l)

on-1 (zm il ce

sum

bn_l) + 2o

21 (zm il

sum n-1 "
2n : {(an—l bn—l + &-1Ch—1+ bn—l Cn—l)} + Z§ 2

k=0

n-2
st oy os- 2

k=0

Now use the induction hypothesis to replace the last two terms by the sums of the first n-1

bitsof A, B and asingle bit carry-inc; :

.S = ! (zm i bn_l) il

which completes the inductive proof.

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

Matthew J. Adiletta, Richard L. Doucette, John H. Hackenberg, Dale H. Leuthold,
and Dennis M. Litwinetz. Semiconductor Technology in a High-Performance VAX
System. Digital Technical Journal, 2(4):43-60, Fall 1990.

A. R. Alvarez, editor. BICMOS Technology and Applications. Kluwer Academic
Publishers, 1989.

G. Bewick, P. Song, G De Micheli, and M. J. Flynn. Approaching a Nanosecond : A
32 Bit Adder. In Proceedings of the 1988 | EEE | nter national Conference on Computer
Design, pages 221226, 1988.

Gary Bewick and Michadl J. Flynn. Binary Multiplication Using Partially Redundant
Multiples. Technical Report CSL-TR-92-528, Stanford University, June 1992.

A. D. Booth. A Signed Binary Multiplication Technique. Quarterly Journal of
Mechanics and Applied Mathematics, 4(2):236-240, June 1951.

C. T. Chuang. NTL with Complementary Emitter-Follower Driver : A High-Speed
Low-Power Push-Pull Logic Circuit. In 1990 IEEE Symposium on VLS Circuits,
pages 93-94. IBM Research Division, Thomas J. Watson Research Center, 1990.

L. Dadda. Some Schemes for Parallel Multipliers. Alta Frequenza, 36(5):349-356,
May 1965.

Bob Elkind, Jay Lessert, James Peterson, and Gregory Taylor. A sub 10ns Bipolar
64 Bit Integer/Floating Point Processor Implemented on Two Circuits. InEEE 1987
Bipolar Circuits and Technology Meeting, pages 101-104, 1987.

152

BIBLIOGRAPHY 153

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Mohamed |. ElImasry. Digital Bipolar Integrated Circuits. John Wiley & Sons, 1983.

M. J. Flynn, G. De Micheli, R. Dutton, R. F. Pease, and B. Wooley. Subnanosecond
Arithmetic : Second Report. Technical Report CSL-TR-91-481, Stanford University,
June 1991.

G. Goto, T. Sato, M. Nakagjima, and T. Sukemura. A 54*54-b Regularly Structured
Tree Multiplier. 1EEE Journal of Solid-State Circuits, 27(9):1229-1236, September
1992.

| EEE Standard for Binary Floating-Point Arithmetic, 1985. ANSI/IEEE Std 754-1985.

Norman P. Jouppi. MultiTitan Floating Point Unit. In MultiTitan: Four Architecture
Papers. Digital Western Research Laboratory, April 1988.

Earl E. Swartzlander Jr., editor. Computer Arithmetic, volume 1. |EEE Computer
Society Press, 1990.

J. Kirchgessner, J. Teplik, V. Ilderem, D. Morgan, R. Parmar, S. R. Wilson, J. Freeman,
C. Tracy, and S. Cosentino. An Advanced 0.4 BiCMOS Technology for High
Performance ASIC Applications. InInternational Electron Devices Meeting Technical
Digest, pages 4.4.1-4.4.4, 1991.

H. Ling. High-Speed Binary Adder. IBM Journal of Research and Devel opment, 25(2
and 3):156-166, May 1981.

O. L. MacSorley. High-Speed Arithmetic in Binary Computers. Proceedings of the
IRE, 49(1):67-91, Jan 1961.

Meta-Software. HSPICE User’s Manual - H9001. Meta-Software Inc., 1990.

J. Mori, M. Nagamatsu, M. Hirano, S. Tanaka, M. Noda, Y. Toyoshima, K. Hashimoto,
H. Hayashida, and K. Maeguchi. A 10ns 54x54-bit Parallel Structured Full Array
Multiplier with 0.5:m CMOS Technology. In 1990 Symposium on VLS Circuits,
pages 125-126, 1990.

BIBLIOGRAPHY 154

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Motorola MECL System Design Handbook. Motorola Semiconductor Productsinc.,
1988.

Michael S. Paterson and Uri Zwick. Shallow Multiplication Circuits. In 10th Sympo-
sium on Computer Arithmetic, pages 28-34, 1991.

Marc Rocchi, editor. High Speed Digital 1C Technologies. Artech House, 1990.

M. R. Santoro, G. Bewick, and M. A. Horowitz. Rounding Algorithms for |EEE
Multipliers. In Proceedings of 9th Symposium on Computer Arithmetic, pages 176—
183, 1989.

Mark Santoro. Design and Clocking of VLS Multipliers. PhD thess, Stanford
University, Oct 1989.

Mark Santoro and Mark Horowitz. SPIM: A Pipelined 64x64b Iterative Array Mul-
tiplier. |EEE International Solid State Circuits Conference, pages 35-36, February
1988.

N. R. Scott. Computer Number Systems & Arithmetic. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1985.

C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans. Am.
Inst. Electr. Eng., 57:713—-723, 1938.

C. E. Shannon. The Synthesis of Two-Terminal Switching Circuits. Bell Syst. Tech.
J., 28(1), 1949.

J. Sklansky. Conditional Sum Addition Logic. Transactions of the IRE, EC-9(2):226—
230, June 1960.

Naofumi Takagi, Hiroto Yasuura, and Shuzo Ygjima. High-speed VLS| Multiplication
Algorithmwith aRedundant Binary Addition Tree. | EEE Transactions on Computers,
C-34(9), Sept 1985.

Jeffery Y.F. Tang and J. Leon Yang. NoiseIssuesinthe ECL Circuit Family. Technical
report, Digital Western Research Laboratory, January 1990.

BIBLIOGRAPHY 155

[32] Stamatis Vassiliadis. Six-Stage 64-Bit Adder. IBM Technical Disclosure Bulletin,
30(6):208-212, November 1987.

[33] StamatisVassiliadis. AddersWith Removed Dependencies. IBM Technical Disclosure
Bulletin, 30(10):426-429, March 1988.

[34] Stamatis Vassiliadis. A Comparison Between Adders with New Defined Carries and
Traditional Schemes for Addition. International Journal of Electronics, 64(4):617—
626, 1988.

[35] C. S. Wallace. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic
Computers, EC-13:14-17, February 1964.

[36] S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital Systems Designers.
Holt, Rinehart and Winston, 1982.

[37] A. Weinberger. 4-2 Carry-Save Adder Module. I1BM Technical Disclosure Bulletin,
23(8):3811-3814, January 1981.

[38] A. Weinberger and J. L. Smith. A One-Microsecond Adder Using One-Megacycle
Circuitry. IRE Transactions on Electronic Computers, EC-5:65-73, June 1956.

[39] S. Winograd. On the Time Required to Perform Addition. Journal of the ACM,
12(2):227-285, 1965.

[40] S. Winograd. On the Time Required to Perform Multiplication. Journal of the ACM,
14(4):793-802, 1967.

