
Programming Random Change of Variables for
Homomorphic Encryption

Juan P. Ramirez
Operaciones Digitales y Procesamiento Integral de

Datos Encriptados, SAS
Jalisco, México

jramirez@binaryprojx.com;
Personal Page: www.binaryprojx.com

Abstract—A Homomorphic Encryption scheme, based on a
change of variables method, is outlined. The data is encrypted
through a random change of variables, and then operations
are performed on the ciphertext, that simultaneously process
and decrypt the result. This improves traditional Homomorphic
Encryption in some instances, by merging two steps into one,
ensuring that the data can only be used for the intended purpose.
Noise and precision are manageable, without huge efficiency
trade-offs as in the case of bootstrapping techniques. A two-party
scheme between a Client a Bank has been developed as a Proof-
of-Concept. The Bank does not have access to inputs representing
Client data, but is able to processes encrypted vectors. The
method is flexible and can be adapted for a different number
of parties, permission management, security levels, efficiency
requirements, etc.

Index Terms—Applied Mathematics, Homomorphic Encryp-
tion, Zero Knowledge Proof, Data Security, Machine Learning

I. INTRODUCTION

Cryptography studies methods of encrypting messages that
are to be shared with specific second-parties, and no one else.
However, the evolving technological landscape calls for more
complete encryption methods that are compatible with data
processing. Traditionally, if one must process encrypted data,
first the data is decrypted, and then the data is processed. This
exposes the data to the second, and potentially third parties, in
many instances. Homomorphic Encryption [1], [2] addresses
this issue by changing the order of these two steps by first
processing the data, while still encrypted, and then decrypting
the result to plaintext. Machine Learning and AI applications
that require sharing mass amounts of sensitive data, smart
grids, large networks, traffic control, electronic voting, energy
management, among many others, can be implemented if
certain privacy issues are solved [3-7].

Let E a function that encrypts natural numbers. Suppose
we encrypt two numbers x, y to obtain two new numbers
Ex,Ey. We won’t worry right now about which space the
ciphertext is defined in, and suppose we have an operation ⊕
defined in that space. The operation of these gives Ex⊕Ey.
For most encryption functions, this is not equal to E(x⊕ y).

Therefore, decrypting Ex ⊕ Ey does not yield the expected
result x⊕y. If there exists a computable function D such that
x + y = D(Ex ⊕ Ey), for any choice of x, y ∈ N, we have
a Partially Homomorphic Encryption Scheme for Addition
(+). If the same property is also satisfied for multiplication
(·), then it is a Fully Homomorphic Encryption Scheme. The
first difficulty in HE is that an operation and an encryption
function are almost never homomorphic, E(x+y) ̸= Ex⊕Ey.
Mathematical homomorphisms that can be used for HE are
not practical solutions because of the complicated structures
involved. Consequently, precision and noise are not easily
mitigated [8], [9] making the algorithms unpractical or en-
ergy inefficient [10], [11], [12] in many scenarios. Here we
explore a Keyless Decryption method that merges processing
and decryption into a single step and avoiding the necessity
for Bootstrapping techniques. In this case, the processing
function is also the decryption key. The first party encrypts
the inputs by applying a random change of variable from a
library of encryption functions. The second party possesses
a corresponding library of process/decryption functions and
determines which of these functions will process/decrypt the
result. Applying any other function of the library yields a
meaningless answer. A large class of encryption functions can
be defined for a large class of processing functions, including
addition and multiplication, and with some advantages over
existing solutions. A specific mathematical model has been
chosen to process a Credit Score for a personal one-year loan,
as a Proof of Concept herein described.

If we wish to represent encryption of a message in a concep-
tual diagram, the mathematical expression for the commutative
diagram is given by an encryption function Em ∈ M ′

that encrypts the original message, and a decryption function
D(Em) ∈ M that decrypts the encrypted message.



M

E

y xD

M ′

Similarly, the commutative diagram for representing a HE
Scheme, in its simplest conceptual form, is given by the
equation P = D ◦P ∗ ◦E shown below, where P : A → B is
the process that we wish applied to the data plaintext and P ∗

is the modified process to be applied to the encrypted data.

A
P−−−−→ B

E

y xD

A
P∗

−−−−→ B

(1)

This diagram illustrates the basic relation for Encrypting the
domain of the function and decrypting the result. Applying the
process P to the plaintext is equivalent to encrypting, applying
P ∗ and then decrypting.

We present a Homomorphic Encryption scheme based on
the concept of change of variable. Suppose a calculation
P : Rn → R has to be applied to an ordered n-tuple
of variables x = (xi)

n
i=1 = (x1, x2, . . . , xn) ∈ Rn. We

encrypt these n variables by applying a computable function
E : Rn → Rm to the ordered n-tuple. An encryption function
of P is a computable function E : Rn → Rm if there exists a
computable function P ∗ : Rm → R such that Px = (P ∗◦E)x.
In this case we say P, P ∗ are an ordered pair of homomorphic
functions [13] with respect to encryption function E. Let
k ∈ N and let P be a fixed processing function and suppose we
have an indexed set of encryption functions Ej : Rn → Rmj

and a corresponding set of functions P ∗
j : Rmj → R, such

that P, P ∗
j are a homomorphic pair under its corresponding

encryption function Ej , for every j ≤ k. That is to say,
P = P ∗

j ◦ Ej for every j ≤ k. We have a set of k-
many encryption functions, {Ej}kj=1, for a single processing
function P . Every time we run process P on a vector x, we
first choose an encryption function E ∈ {Ej}kj=1. The original
vector x is transformed using E to obtain an encrypted vector
Ex. If we select a different encryption function of {Ej}j ,
we could get different data types and number of coordinates
because every Ej has its own dimension of codomain. If
E : Rn → Rm1 and F : Rn → Rm2 are elements of {Ej}j ,
then m1 and m2 can be distinct natural numbers. There are
k-many different methods for encrypting the variables of our
processing function P = P ∗

j ◦Ej . When an encryption function
Ej is used, its corresponding processing function P ∗

j is applied
to the encrypted variables.

II. ENCRYPTION BY CHANGE OF VARIABLE

Suppose P : Rn → R is a function of n independent
variables, and one party wishes for a second party to compute

P (x1, x2, . . . , xn) without having the capability of knowing
the input vector (x1, x2, . . . , xn). Let E : Rn → Rn, defined
by functions e1, e2, . . . , en : Rn → R such that

P ◦ E = D−1 ◦ P, (2)

for some invertible function D−1 : R → R.

Rn P−−−−→ R

E

y yD−1

Rn P−−−−→ R

Suppose the change of variables E expresses P ◦E in terms
of an invertible function D−1, of P . If the inverse function
D is computable then we have encryption and decryption
functions E,D, respectively.

For example, let P : R2 → R be the function P (x, y) =
x+ y2, and let e1(x) = a2x2 + 2a2xy2 and e2(y) = ay2, for
some parameter a ∈ R. Then

(P◦E)(x, y) = e1(x)+(e2(y))
2 = a2(x+y2)2 = a2(P (x, y))2.

We have found P ◦ E to be expressed in terms of P ,
namely (P ◦ E)(x, y) = a2(P (x, y))2. In this case, the
function D−1 is given by D−1(x) = a2x2. Therefore, the
decryption function is given by D(x) = 1

a

√
x. This implies

P = D ◦ P ◦ E = 1
a (P ◦ E)1/2. Let us understand what

this relation means, and what it permits. Suppose we wish
for a second party to compute P (x0, y0) = x0 + y20 , for
constants x0, y0 ∈ R, but we do not wish to share the plain-
text vector (x0, y0) with the second party. First we encrypt
the inputs, using the function E described above, to obtain
E(x0, y0) = (e1(x0, y0), e2(x0, y0)), and send this encrypted
vector to the second party. The second party will then take this
encrypted vector and apply function P ′ = D ◦P to obtain the
desired result. We collapse (1) into a three diagram. If we
consider the composition P ′ = D ◦P as a single function, the
resulting relation is P = P ′ ◦ E.

Rn

Rn R

P ′E

P

(3)

Now we must ask: Can the second party decrypt the
encrypted vector to find the original inputs x0, y0 with the
information available? The information available is 1) Pro-
cessing function P , 2) Encryption function E and Encrypted
Variables e1, e2, and 3) Final result p0. From 1) and 3) we
have equation x0 + y20 = p0, where p0 = (P ′ ◦ E)(x0, y0).
Two more equations are given by a2x2

0 + 2a2x0y
2
0 = e1 and



ay20 = e2. A solution for a, x0, y0 must be found for the system
of equations

x0 + y20 = p0

a2x2
0 + 2a2x0y

2
0 = e1

ay20 = e2

Of course, if we find a solution for a, we can then calculate
x, y. Let us also specify the bit size of the values in question.
First, we have 64-bit inputs x0, y0. We also have a 128-bit
encryption key, a. Of course, this key is unknown to the second
party otherwise it could easily decrypt e1 and e2 to find the
original inputs x0, y0. That is to say, for purposes of finding
solutions to this system of equations the key a is an unknown
integer of 128 bits. Now its clear that finding the original
inputs is equivalent to finding the key a. If the second party
knows the inner workings of the scheme, they would know to
start by finding the factors of the 256-bit number e2.

Now that we understand where vulnerabilities can arise, we
can ask a few questions to maximize security. Let us start by
asking if their may exist a type of integer that is optimal for
the security parameter? For example, should we choose a to
be a prime number every time, then finding a is trivial. To
find a, you simply have to find the factors of e2 = ay2 that
are smaller than 64-bits. Once we have the 128-bit key a, we
can calculate y and then x. We conclude that the key should
not be chosen to be a prime number. The more prime factors
a has the better, because a can be any 128-bit number formed
by multiplying a combination of the prime factors of e2.

For every encryption function E, of some processing func-
tion P , we have different security parameters. In each case,
the keys shall have different form and requirements to max-
imize security. Let us define an example with more general
conditions. Let P (x, y) = x + y, and E : R2 → R2 defined
by coordinate functions e1(x) = eax+b and e2(y) = eay+b.
Multiplying gives e1(x)e2(y) = eax+beay+b = ea(x+y)+2b.
This implies P = P ∗ ◦ E, where P ∗(x, y) = 1

a (log x +
log y − 2b) and a, b are the security parameters. There is a
slight difference from the last example, because P ∗(x, y) =
1
a (log x+ log y− log 2b) is not of the form D ◦P . In the last
example P ′ = D ◦ P , but now the function P ∗(x, y) is not
expressed in terms of x+ y.

We give a definition of encryption and decryption functions
that supersedes the previous ones. If, more generally, given an
encryption function E : Rn → Rm we can find a computable
function P ∗ : Rm → R such that P = P ∗ ◦ E, then we have
an encryption scheme for process P .

Rm

Rn R

P∗E

P

Notice that there is no straightforward method for finding
the most secure and efficient encryption and processing func-
tions E,P ∗, for a given process P . Instead of using one-
way functions to encrypt the inputs, we use the fact that

certain encryption functions are safe (the keys, and therefore
the plaintext inputs, cannot easily be found). Furthermore, the
process/decrypt function P ∗ remains unknown to unwanted
parties. And, even if the encryption and processing functions
E,P ∗ where to be known, finding the keys can be a very
difficult problem. One way to ensure the encryption function
remains unknown is to have a large library of encryption func-
tions for each processing function, and then randomly select
an encryption function each time. This solution is discussed in
Sections 6 and 7. The general method presented here allows
for a FHE scheme that can be adapted for different number
of parties, permission configurations and security needs.

In Section 5, we outline a simple two-party scheme to
simulate a personal loan Credit Score where the first party
is a Client and the second party is a Bank. The Client will
encrypt the inputs, and share them with the Bank. The Bank
receives these encrypted values, processes the encrypted data
and sends the result back to the Client.

In the general case defined above, we have provided an
example where there is no key to decrypt the final result. The
function P ∗ and its parameters are necessary and sufficient to
process and decrypt the data. The inputs of function P ∗ are
encrypted but the output is a plaintext value. After processing
the data we do not have to decrypt the results because the
data is already decrypted. The processing function P ∗ serves
as decryption key also.

III. KEYLESS DECRYPTION

We will illustrate a special case of relation (3). Let
P (x, y, z) = x2+y2

z . If we make the change of variables
e1(x) = ax, e2(y) = ay, e3(z) = a2z, then we have
P = P ◦ E. Again, P ◦ E is a function of P . In this
case D−1 = I is the identity function. This example of
P (x, y, z) = (ax)2+(ay)2

a2z cancels nicely with the encryption
function, so that D = I is the identity function. When this
happens we say this is a Keyless Decryption Scheme because
P ′ = I ◦ P = P . In this case, the function that has to be
applied to the encrypted data is the same function that would
be applied to the original plaintext. No new function has to
be defined, P ′ = P .

Rn

Rn R

PE

P

This example of Keyless Decryption is not semantically
secure for several reasons, but non-trivial and semantically
secure examples of Keyless Decryption can be found for
certain functions. In this example, if any of x, y, z is zero,
then its corresponding Encrypted Variable will be zero. Sec-
ondly, the bit-length of the Variables is easily deduced from
the Encrypted Variables, which makes it useless for almost
any application. Ultimately, the encryption function of this
example does not work for the following reason. It is easy
to find Key a, to calculate the Inputs. The Key is the number
that divides e1, e2 once and divides e3 two times.



There are different techniques for defining secure encryption
functions and keys without recurring to excessive bit-lengths,
because there are encryption functions whose equations do not
determine the keys easily. The solution presented in Sections
6 and 7 uses strong and “semi-strong” encryption functions to
create a large library of encryption functions, and randomly
chooses a different one each time, adding an extra layer of
security. Given a large library of encryption functions {Ej}j ,
for a function P , the second party is provided with a library
of processing functions {P ∗

j }j , such that each encryption
function Ej is associated to a unique processing function P ∗

j .

IV. PROGRAM SCHEMATICS

This section defines the schematics of the proposed two-
party POC. Variants adapting to different needs can similarly
be worked out. Privately communicating sensitive financial
information between the Bank and the Client for numeric
evaluation will require an infrastructure that will be briefly
discussed without technical detail. Full-scale multi-purpose
versions of this HE scheme are being developed for licensing.

-6 (Six) Data Elements. We begin by describing the data
elements. First we have 6 (six) plaintext i) INPUTS represent-
ing the Client’s data, in the form of 32-bit unsigned integers.
The Inputs are Net Income, Expenses, Capital, Assets, Current
Debt and Loan Amount. The Inputs will be processed, along
with ii) PARAMETERS, at the Client’s terminal to reduce
the six Inputs to a total of 4 (four) numeric values we will
call iii) VARIABLES. The four Variables are Net Income,
Total Expenses, Worth and Total Debt. The Variables are then
encrypted using the Parameters and iv) KEYS. The number of
Keys will vary depending on the encryption function. Encrypt-
ing the Variables produces new data types, v) ENCRYPTED
VARIABLES, of a chosen length. The encrypted values are
sent to the Bank for processing. The Bank processes the
Encrypted Variables together with another set of Parameters
that fine tune and adjust the mathematical model for different
cases. For example, Parameters can adjust interest rate, loan
period, weights on debt or on different classes of assets, etc.
The sixth data type is the vi) FINAL OUTPUT which is
the final Credit Score resulting from the Bank processing the
Encrypted Variables.

-5 (Five) Modules. The communications and internal
operations for this scheme will be divided into (5) five
MODULES, (3) three of which are for internal processes,
and (2) two for communications between the Client and the
Bank. Of the three processing modules, the first two are run
by Client, while the third module is run by the Bank.

MODULE I: INTERFACE for INPUT/OUTPUT at
CLIENT’S TERMINAL. Client Interface for Inputs. The
Bank does not have access to Inputs nor keys. The Bank
will only have access to Encrypted Variables.

– Input: Six (6) 32-bit inputs as financial and loan data
– Output: Four (4) 32-bit plaintext Variables

MODULE II for ENCRYPTING VARIABLES at
CLIENT’S TERMINAL. This module receives the Vari-
ables from Module I, and encrypts them. Encryption is
divided into two functions:
1) Generate encryption Keys.
2) Encrypt Variables using Keys.

MODULE CI for COMMUNICATING ENCRYPTED
VARIABLES. This module communicates the Encrypted
Variables from the Client to the Bank. The Client can
verify the Payload consists of the Encrypted Variables.
SEND: ENCRYPTED VARIABLES

from: Client Module II
to: Bank Module III

MODULE III for PROCESSING ENCRYPTED VARI-
ABLES at Bank. This module will be run by the Bank, to
calculate the final Credit Score using Encrypted Variables
and Parameters. This module must support arbitrarily
long arithmetic. Although it does not have an explicit de-
cryption step, the Output of this module is the decrypted
Credit Score.

– Input: Encrypted Variables (Output of Mod. II)
– Output: Final Credit Score in plaintext (decrypted)

MODULE CII for COMMUNICATING FINAL CREDIT
SCORE. This module is used for communicating the final
Credit Score to the Client. The Bank sends the Final
Output from Module III, to Module I.
SEND: FINAL OUTPUT (Credit Score)

from: Bank Module III
to: Client Module I

-8 (Eight) Steps. Eight steps are sufficient to find the
Final Output in the form of a plaintext floating point number
between 0 and 10.

STEP 1: INPUT DATA at MODULE I. Inputs are 32-bit
unsigned integers representing Net Income, Expenses,
Capital, Assets, Current Debt and Loan Amount.

STEP 2: CALCULATE VARIABLES at MODULE I. Use
Inputs to find Variables NI, TE, W and TD.
A. Net Income → Net Income (NI)
B. Loan Amount → Newly Incurred Debt (NID) &

Service to Debt (SD)
C. Current Debt & Newly Incurred Debt → Total Debt

(TD)
D. Expenses & Service to Debt → Total Expenses (TE)
E. Capital & Assets → Worth (W)

Variables are a simple transformation of Inputs. This
step outputs four Variables, which are Net Income, Total
Expenses, Worth and Total Debt.



STEP 3: SEND VARIABLES from MODULE I to
MODULE II.

STEP 4: GENERATE KEYS at MODULE II.

STEP 5: ENCRYPT VARIABLES at MODULE II.
Variables are encrypted by Client using Module II.

STEP 6: SEND ENCRYPTED VARIABLES from
MODULE II to MODULE III using MODULE CI.

STEP 7: PROCESS ENCRYPTED VARIABLES
at MODULE III. The Bank will receive Encrypted
Variables, and operate on these.

STEP 8: SEND DECRYPTED OUTPUT from MODULE
III to MODULE I using MODULE CII. The reader is
invited to try a variety of combinations of inputs to
verify validity of the mathematical model for predicting
financial reliability. Finding a deterministic algorithm,
that decrypts the Inputs, should prove impractical.

V. MATHEMATICAL MODEL

Encryption and Processing functions are defined that yield
a decrypted plaintext Credit Score, to be shared with the
Client. The function we wish to calculate is normalized. If
the income to expense ratio and the worth to debt ratio go
to infinity, the Credit Score is 10. If, on the other hand, the
expenses and debt grow proportionally with respect to income
and worth, the Credit Score is 0. The minimum approval score
is suggested at 5 points, given the current settings and weights
of the parameters, but these can be modified for different cases.
A reasonably calibrated model for loan approvals based on a
client’s financial data (income, capital, debt, expenses, etc.)
is proposed. Parameters can be modified to adapt the Credit
Score model to different scenarios (different types of loans
such as micro loan, business loan, loan period, interest, etc.).
The proposed processing function P for this model is

P (NI, TE,W, TD) =
A ·NI√

NI2 + αTE2
+

B ·W√
W 2 + βTD2

,

where A,α,B, β are parameters, which we will set to numeric
values to calibrate our model. Current settings are fixed at
A = 8, B = 2 and α = 6, β = 60. Fixing parameter A = 8
means that the client can have a total of 8 points for having a
good income to expense ratio. On the other hand, the client can
accumulate a total of 2 points for having an excellent worth to
debt ratio. The parameter α is a weight on the expenses, while
β is a weight on debt. There are other parameters such as the
interest rate and loan period which will be set to 15% interest
rate for a one-year loan, and which are used to calculate the
Newly Incurred Debt, Service to Debt, Total Debt and Total
Expenses (including the new loan).

Now that P is defined, with its variables and parameters,
choose an encryption function E : R4 → Rm, where m is
the number of encrypted variables. Let E : R2×2 → R4×2 the

function that encrypts variables in the space of real matrices
of size R2×2, in the space R4×2, and given by

E

[
NI W
TE TD

]
=



K1NI +K2 K4W +K5

K3

√
NI2 + αTE2 K6

√
W 2 + βTD2

K2

K3

√
NI2+αTE2

K5

K6

√
W 2+βTD2

K3

K1

K6

K4


where the Ki are keys of the desired bit length. The resulting
object represents the encrypted variables and we will call it
matrix EV , where EV i

j is the element in the i-th column
and j-th row. These eight encrypted variables are going to be
processed by the bank. We can verify

P (NI, TE,W, TD) = 8EV 1
4

(
EV 1

1

EV 1
2

− EV 1
3

)
+2EV 2

4

(
EV 2

1

EV 2
2

− EV 2
3

)
which implies

P ∗(x1, x2, . . . , x8) = 8x4

(
x1

x2
− x3

)
+ 2x8

(
x5

x6
− x7

)
In this case it is easy to see that keys K2 and K5

can be easily found if one has knowledge of the encryp-
tion function and the encrypted variables, because K2 =
EV 1

2 EV 1
3 and K5 = EV 2

2 EV 2
3 . However, to find the orig-

inal inputs NI, TE,W, TD, one would also have to know
K1,K3,K4,K6, which are not readily found.

Let us illustrate another trivial example of an encryption
function. Given the form of the processing function, we can
express it in terms of the quotients Q1 = TE

NI and Q2 = TD
W .

P (NI, TE,W, TD) = P (Q1, Q2) =
A√

1 + αQ1
+

B√
1 + βQ2

.

This simply means we will encrypt Q1 and Q2, instead
of encrypting NI, TE,W, TD. We will use the encryption
function E : R2 → R3×2 defined by

E
[
Q1 Q2

]
=


K1

Q1+K2

K3

Q2+K4

K1(αK
2
2+1)

Q1+K2
− 2αK2

1K
2
2

K3(βK
2
4+1)

Q2+K4
− 2βK2

3K
2
4

αK2
1 βK2

3

 .

It is easy to verify

P (Q1, Q2) =
8EV 1

1√
EV 1

1 EV 1
2 + EV 1

3

+
2EV 2

1√
EV 2

1 EV 2
2 + EV 2

3

.

The corresponding processing function for this encryption
function is defined by

P ∗(x1, x2, . . . , x6) =
8x1√

x1x2 + x3
+

2x4√
x4x5 + x6

.



VI. RANDOMIZING METHODS

The two encryption functions used in the last section
constitute trivial examples of encryption functions, yet it is
still difficult to find the original inputs even if one knows
the encrypted variables and the encryption function used. We
can still add another layer of security. Suppose we have a
library of k different encryption functions {Ej}kj=1, of a given
processing function P . If the client encrypts the variables
using Ei, for some Ei ∈ {Ej}j , then the encrypted variables
will have to be processed with the corresponding processing
function P ∗

j . Furthermore, the codimension of Ej can be
different from another encryption functions codimension.

It is possible to implement a randomized selection of the
encryption functions that adds an extra layer of security.
After transforming the inputs into the variables, in Module
I, the variables are sent to Module II. Now, when Module II
receives the variables, it chooses a method from the library of
encryption functions {Ej}j , to encrypt the variables. Once j
is fixed, the vector of variables in Rn will be transformed
into a new vector of encrypted variables. The bank has a
corresponding library of processing functions {P ∗

j }j . Upon
receiving the vector of encrypted variables, the bank will
be able to identify and run the correct processing function.
Having a large library of encryption methods is beneficial for
the security of the overall scheme because the data type and
the number of encrypted variables can be different each time
process P has to be applied to a vector x, making it harder to
implement pattern recognition. A basic version of the personal
loan Credit Score, detailed above, has been implemented and
will be made available for auditing purposes, as well as for
establishing collaboration opportunities.

VII. GENERALIZATION

In many instances it is desirable to have data encrypted
in such a way that it can then be reencrypted for use in
one of many different processing functions. Consider a one-
party scheme where the User has a numerical database E(DB)
encrypted at rest and wishes to perform operations on elements
of the data base, but wants to maintain the data confidential.
The finite library of functions for processing the data is
{P}P = {R,S, . . . , T}. The User requests for any of the
functions to be applied to a vector of the database. Suppose
we have a library of at least two processing functions, where
R(x, y) = x+y and S(x, y) = xy. Every processing function
P ∈ {P}P has its own library of encryption functions.
The encryption libraries are {ER,i}i = {ER,1, ER,2, . . .},
{ES,j}j = {ES,1, ES,2, . . .}, etc. Each encryption library has
its own cardinality. The User sends a request to the database
which includes an encrypted index for a processing function
P : Rn → R, and the encrypted addresses of the elements
of the database. The request is a vector of n+ 1 coordinates
(#P, x1, x2, . . . , xn). The first coordinate of the request is an
index, #P , indicating to the database the processing function.
The other n coordinates of the request are the addresses of the
elements of the database. Then, the database randomly selects
an encryption function E : Rn → Rm from the set {EP,j}j .

The database has a library of processing functions
{P ∗

E}P,E = {R∗
ER,1

, R∗
ER,2

, . . . , S∗
ES,1

, S∗
ES,2

, . . .}, for all
P ∈ {Pj}j and all E ∈ {EP,j}j . The processing function
P ∗
E depends on the processing function P and the encryption

function E, so that if we change the process P then the
encrypted processing function P ∗

E is also different. Similarly,
if we change the encryption function E then the function P ∗

E

changes again. The database identifies and applies the correct
function P ∗

E to the other n encrypted values.
A robust, general purpose encryption scheme for a large li-

brary of processing functions, with large libraries of encryption
functions is in development. Such a system requires minimiz-
ing the number of processing functions and maximizing the
number of encryption functions per processing function.

VIII. CONCLUSIONS

Although HE is a promising concept in the science of
cryptography, the same reasons that make it safe also make
it non applicable in many situations. Current energy and time
efficiency standards of HE are not met in a wide range of
crucial applications. This change of variable method offers
many advantages including the fact that the encrypted data can
only be used for the intended purposes, and noise and precision
are managed without significant efficiency trade-offs.

This scheme is applicable to a wide range of processing
functions, including addition and multiplication from which
a FHE scheme can be constructed. Trigonometric functions
and the numeric derivative can also be homomorphically en-
crypted. It is a flexible scheme that can be adapted to different
number of participants, permission configurations, security
demands, efficiency requirements, etc. These characteristics
make it a far and wide reaching solution with applications
in online security, private Digital Signal Processing, smart
cities and traffic problems, Machine Learning such as in
specific cases of AI and Neural Network training utilizing
sensitive data, operating vectors of encrypted databases, smart
grids and energy management, among other activities directly
dependent on the difficult marriage of data security and
efficient computing. The proposed method can be integrated to
SoC by implementing this encryption scheme in a processor
architecture with a Simple and Linear Fast Adder having
a linear and scaleable topology [14], [15], [16]. Encrypted
Processing Units can help achieve secure cloud computing
without sacrificing efficiency at hardware and software level.

ACKNOWLEDGEMENTS

The forementioned software schematics, architecture, al-
gorithms, protocols, diagrams, pseudocode, steps, modules,
formulas, strategies, and mathematical models are shared
for educational purposes and public exposition, and hold no
commercial value. Other specific and general versions, variants
derived thereof, trivial modifications from such manipulations
of homomorphic encrytpion by change of variable are intel-
lectual property and trade secrets developed by the author for
OPERACIONES DIGITALES Y PROCESAMIENTO INTE-
GRAL DE DATOS ENCRIPTADOS, SAS (Mexico).



SUPPLEMENTARY MATERIAL

REFERENCES

[1] Ronald L. Rivest, Len Adleman, and Michael L. Detouzos. On
data banks and privacy homomorphisms. In Foundations of Secure
Computation, pages 165–179. Academic Press, 1978. Available at
https://people.csail.mit.edu/rivest/pubs.html#RAD78.

[2] C. Gentry, (2009). “A Fully Homomorphic Encryption Scheme,” Doc-
toral Dissertation, Symposium on the Theory of Computing, NY, New
York, USA, 2009.

[3] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. CryptoNets: “Applying Neural
Networks to Encrypted Data with High Throughput and Accuracy.”
In 33rd International Conference on Machine Learning (ICML 2016),
volume 48 of Proceedings of Machine Learning Research, pages
201–210. PMLR, 2016. URL: http://proceedings.mlr.press/v48/ gilad-
bachrach16.html.

[4] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier.
“Fast Homomorphic Evaluation of Deep Discretized Neural Networks.”
In Advances in Cryptology – CRYPTO 2018, Part III, volume 10993
of Lecture Notes in Computer Science, pages 483–512. Springer, 2018.
doi:10.1007/978-3-319-96878-0 17.

[5] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
“Simulating Homomorphic Evaluation of Deep Learning Predictions.” In
Cyber Security Cryptography and Machine Learning (CSCML 2019),
volume 11527 of Lecture Notes in Computer Science, pages 212–230.
Springer, 2019. doi:10.1007/ 978-3-030-20951-3 20

[6] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser.
“Secure Large-Scale Genome-Wide Association Studies Using Homo-
morphic Encryption.” Cryptology ePrint Archive, Report 2020/563,
2020. https://ia.cr/2020/563.

[7] iDASH secure genome analysis competition.
http://www.humangenomeprivacy.org.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete
hardness of learning with errors.” Journal of Mathematical Cryptology,
9(3):169–203, 2015. doi:10.1515/jmc-2015-0016.

[9] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. “Classical hardness of learning with errors.” In 45th
Annual ACM Symposium on Theory of Computing, pages 575–584.
ACM Press, 2013. doi:10.1145/2488608.2488680.

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption over the torus.
Journal of Cryptology, 33(1):34–91, 2020. Earlier versions in ASI-
ACRYPT 2016 and 2017. doi:10.1007/s00145-019-09319-x.

[11] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomor-
phic Encryption in Less than a Second.” In Advances in Cryptology –
EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 617–640. Springer, 2015.
doi:10.1007/978-3-662-46800-5 24.

[12] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig.
Improved security for a ring-based fully homomorphic encryption
scheme. In Cryptography and Coding (IMACC 2013), volume 8308
of Lecture Notes in Computer Science, pages 45–64. Springer, 2013.
doi:10.1007/978-3-642-45239-0 4.

[13] Ramirez, J. 2015. Systems and Categories.
arXiv:1509.03649v5 [math.CT]

[14] J. P. Ramı́rez, “Simple and Linear Fast Adder of Multiple Inputs
and Its Implementation in a Compute-In-Memory Architecture,” 2024
International Conference on Artificial Intelligence, Computer, Data
Sciences and Applications (ACDSA), Victoria, Seychelles, 2024, pp.
1-11, doi:10.1109/ACDSA59508.2024.10467957.

[15] Ramirez, J. “SIMPLE AND LINEAR FAST ADDER,” WIPO,
Patentscope. Publication Number: WO/2023/220537. Publication Date:
16/11/2023. Applicant’s and Inventor’s name: Juan Pablo Ramirez

[16] Ramirez, J. 2023. “Canonical Set Theory with Applications from
Matrix Operations and Data Structures to Homomorphic Encryp-
tion” Monograph Exclusively on Author’s personal home page:
www.binaryprojx.com


