
UDC: 004.056.55

Ramirez
Mexico, Guadalajara,

Operaciones Digitales y
Procesamiento Integral
de Datos Encriptados

Программирование случайного

изменения переменных для

Гомоморфное шифрование

Описана схема гомоморфного шифрования. Данные шифруются через случайное

изменение переменных, а затем операции выполняются на зашифрованном тексте,

который одновременно обрабатывается и расшифровать результат. Это улучшает

традиционный гомоморфный Шифрование путем объединения двух этапов в один,

Гарантия того, что данные могут быть использованы только по назначению. Шум и

точность управляемы, без большой эффективности Компромиссы. Двухпартийная

Схема между Клиентом и Банком была разработана в качестве Доказательства-

Концепция. Банк не имеет доступа к входным данным, представляющимКлиентские

данные, но способен обрабатывать зашифрованные векторы. Тем Метод является

гибким и может быть адаптирован для разного числа сторон, управление

разрешениями, уровни безопасности, оперативность требования и т.д. Гомоморфный

энкрипДоказательство с нулевым разглашением, безопасность данных, машинное

обучение.

I. INTRODUCTION

Traditionally, if one must process encrypted data, first the data is decrypted, and

then the data is processed. This exposes the data to the second, and potentially third parties,

in many instances. Homomorphic Encryption [1], [2] addresses this issue by changing the

order of these two steps by first processing the data, while still encrypted, and then

decrypting the result to plaintext. Machine Learning and AI applications that require

sharing mass amounts of sensitive data, smart grids, large networks, traffic control,

electronic voting, energy management, among many others, can be implemented if certain

privacy issues are solved [3-7]. Let 𝐸 a function that encrypts natural numbers. Suppose

we encrypt two numbers 𝑥, 𝑦 to obtain two new numbers 𝐸𝑥, 𝐸𝑦 . We won't worry right

now about which space the ciphertext is defined in, and suppose we have an operation

⊕ defined in that space. The operation of these gives 𝐸𝑥 ⊕ 𝐸𝑦 . For most encryption

functions, this is not equal to 𝐸(𝑥 ⊕ 𝑦). Therefore, decrypting 𝐸𝑥 ⊕ 𝐸𝑦 does not

yield the expected result 𝑥 ⊕ 𝑦 . If there exists a computable function 𝐷 such that 𝑥 +

𝑦 = 𝐷(𝐸𝑥 ⊕ 𝐸𝑦), for any choice of 𝑥, 𝑦 ∈ ℕ , we have a Partially Homomorphic

Encryption Scheme for Addition (+). If the same property is also satisfied for

multiplication (·), then it is a Fully Homomorphic Encryption Scheme. The first difficulty

in HE is that an operation and an encryption function are almost never homomorphic,

𝐸(𝑥 + 𝑦)  ≠  𝐸𝑥 ⊕ 𝐸𝑦. Mathematical homomorphisms that can be used for HE are

not practical solutions because of the complicated structures involved. Consequently,

precision and noise are not easily mitigated [8], [9] making the algorithms unpractical or

energy inefficient [10], [11], [12] in many scenarios. We explore a Keyless Decryption

method that merges processing and decryption into a single step, avoiding Bootstrapping

techniques. In this case, the processing function is the decryption key. The first party

encrypts the inputs by applying a random change of variable from a library of encryption

functions. The second party possesses a corresponding library of process/decryption

functions and determines which of these functions will process/decrypt the result.

Applying any other function of the library yields a meaningless answer. We describe an

encrypted Credit Score calculation for a personal one-year loan as a Proof of Concept.

The commutative diagram for representing a HE Scheme, in its simplest

conceptual form, is given by the equation 𝑃 = 𝐷 ∘ 𝑃∗ ∘ 𝐸 shown below (1), where

𝑃: 𝐴 → 𝐵 is the process and 𝑃∗ is the process applied to the encrypted data.

 (1)

This diagram illustrates the basic relation for Encrypting the domain of the

function and decrypting the result. Applying process 𝑃 to the plaintext is equivalent to

encrypting, then applying 𝑃∗ and finally decrypting. We propose an HE scheme based on

the concept of change of variable. Suppose a calculation 𝑃:ℝ𝑛 → ℝ must be applied to

an ordered 𝑛 -tuple of variables 𝑥 = (𝑥𝑖)𝑖=1
𝑛 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛. We encrypt

these 𝑛 variables by applying a computable function 𝐸:ℝ𝑛 → ℝ𝑚 to the ordered 𝑛 -

tuple. An encryption function of 𝑃 is a computable function 𝐸:ℝ𝑛 → ℝ𝑚 if there

exists a computable function 𝑃∗: ℝ𝑚 → ℝ such that 𝑃𝑥 = (𝑃∗ ∘ 𝐸)𝑥. In this case we

say 𝑃, 𝑃∗ are an ordered pair of homomorphic functions [13] with respect to encryption

function 𝐸 .

II. ENCRYPTION BY CHANGE OF VARIABLE

Suppose 𝑃:ℝ𝑛 → ℝ⬚ is a function of 𝑛 independent variables, and one party

wishes for a second party to compute 𝑃(𝑥1, 𝑥2,… , 𝑥𝑛) without having the capability of

knowing the input vector (𝑥1, 𝑥2, … , 𝑥𝑛). Let 𝐸:ℝ𝑛 → ℝ𝑛 , defined by functions

𝑒1, 𝑒2, … , 𝑒𝑛:ℝ
𝑛 → ℝ such that

 𝑃 ∘ 𝐸 = 𝐷−1 ∘ 𝑃 (2)

for some invertible function 𝐷−1: ℝ → ℝ.

Suppose the change of variables 𝐸 expresses 𝑃 ∘ 𝐸 in terms of an invertible

function 𝐷−1, of 𝑃 . If the inverse function 𝐷 is computable then we have encryption

and decryption functions 𝐸,𝐷 , respectively. For example, let 𝑃:ℝ2 → ℝ be the

function 𝑃(𝑥, 𝑦) = 𝑥 + 𝑦2 , and let 𝑒1(𝑥) = 𝑎2𝑥2 + 2𝑎2𝑥𝑦2 and 𝑒2(𝑦) =

𝑎𝑦2, for some parameter 𝑎 ∈ ℝ . Then

(𝑃 ∘ 𝐸)(𝑥, 𝑦) = 𝑒1(𝑥) + (𝑒2(𝑦))
2
= 𝑎2(𝑥 + 𝑦2)2 = 𝑎2(𝑃(𝑥, 𝑦))

2
.

We have found 𝑃 ∘ 𝐸 to be expressed in terms of 𝑃 , namely(𝑃 ∘ 𝐸)(𝑥, 𝑦) =

𝑎2(𝑃(𝑥, 𝑦))
2

. In this case, the function 𝐷−1 is given by𝐷−1(𝑥) = 𝑎2𝑥2. Therefore,

the decryption function is given by 𝐷(𝑥) =
√𝑥

𝑎
. This implies 𝑃 = 𝐷 ∘ 𝑃 ∘ 𝐸 =

1

𝑎
(𝑃 ∘ 𝐸)

1

2. Let us understand what this relation means, and what it permits. Suppose we

wish for a second party to compute 𝑃(𝑥0, 𝑦0) = 𝑥0 + 𝑦0
2, for constants 𝑥0, 𝑦0 ∈ ℝ,

but we do not wish to share the plaintext vector (𝑥0, 𝑦0) with the second party. First, we

encrypt the inputs, using the function 𝐸 described above, to obtain 𝐸(𝑥0, 𝑦0) =

(𝑒1(𝑥0, 𝑦0), 𝑒2(𝑥0, 𝑦0)), and send this encrypted vector to the second party. The

second party will then take this encrypted vector and apply function 𝑃′ = 𝐷 ∘ 𝑃 to

obtain the desired result. We collapse (1) into a three diagram. If we consider the

composition 𝑃′ = 𝐷 ∘ 𝑃 as a single function, the resulting relation is 𝑃 = 𝑃′ ∘ 𝐸.

 (3)

Can the second party decrypt the encrypted vector to find the original inputs

𝑥0, 𝑦0 with the information available? The information available is 1) Processing

function 𝑃 , 2) Encryption function 𝐸 and Encrypted Variables 𝑒1, 𝑒2, and 3) Final result

𝑝0. From 1) and 3) we have equation 𝑥0 + 𝑦0
2 = 𝑝0, where 𝑝0 = (𝑃′ ∘ 𝐸)(𝑥0, 𝑦0).

Two more equations are given by 𝑎2𝑥0
2 + 2𝑎2𝑥0𝑦0

2 = 𝑒1 and 𝑎𝑦0
2 = 𝑒2. A solution

for 𝑎, 𝑥0, 𝑦0, of this system of equations must be found. If we find a solution for 𝑎 , we

can then calculate 𝑥, 𝑦 . Let us specify the bit size of the values in question. We have 64-

bit inputs 𝑥0, 𝑦0. We also have a 128-bit encryption key, 𝑎 . This key is unknown to the

second party, otherwise it could easily decrypt 𝑒1, 𝑒2 to find 𝑥0, 𝑦0 . For purposes of

finding solutions to this system of equations the key 𝑎 is an unknown integer of 128 bits.

Finding the original inputs is equivalent to finding the key 𝑎 . If the second party knows

the inner workings of the scheme, they would know to start by finding the factors of the

256-bit number 𝑒2. Now that we understand where vulnerabilities arise, we can ask a few

questions to maximize security. Let us start by asking if a type of integer is optimal for the

security parameter? For example, if 𝑎 is always chosen to be a prime number, then finding

𝑎 is trivial. To find 𝑎 , you must simply find the factors of 𝑒2 = 𝑎𝑦2 that are smaller

than 64-bits. Once we have the 128-bit key 𝑎 , we can calculate 𝑦 and then 𝑥 . Thus, the

key should not be chosen to be a prime number. The more prime factors in 𝑎 , the better.

For every encryption function 𝐸 , of some processing function 𝑃 , we have different

security parameters. In each case, the keys have different required forms to maximize

security.
 We give a definition of encryption and decryption functions that supersedes the

previous ones. If, more generally, given an encryption function 𝐸:ℝ𝑛 → ℝ𝑚 we can

find a computable function 𝑃∗: ℝ𝑚 → ℝ such that 𝑃 = 𝑃∗ ∘ 𝐸 , then we have an

encryption scheme for process 𝑃 .

There is no straightforward method for finding the most secure and efficient

encryption and processing functions 𝐸,𝑃∗, for a given process 𝑃 . We use the fact that

certain encryption functions are safe (the keys, and therefore the plaintext inputs, cannot

easily be found). Even if the encryption and processing functions 𝐸, 𝑃∗ are known,

finding the keys is a very difficult problem. One way to ensure the encryption function

remains unknown is to have a large library of encryption functions for each processing

function, and then randomly select an encryption function each time. This solution is

discussed in Sections 6 and 7. The method proposed here allows for an FHE scheme that

can be adapted for different number of parties, permission configurations and security

needs. In Section 5, we outline a simple two-party scheme to simulate a personal loan

Credit Score where the first party is a Client, and the second party is a Bank. The Client

will encrypt the inputs and share them with the Bank. The Bank receives these encrypted

values, processes the encrypted data and sends the result back to the Client.

III. KEYLESS DECRYPTION

We will illus trate a special case of relation (3). Let 𝑃(𝑥, 𝑦, 𝑧) =
𝑥2+𝑦2

𝑧
.

If we make the change of variables 𝑒1(𝑥) = 𝑎𝑥,  𝑒2(𝑦) = 𝑎𝑦,  𝑒3(𝑧) = 𝑎2𝑧, then

we have 𝑃 = 𝑃 ∘ 𝐸 . Again, 𝑃 ∘ 𝐸 is a function of 𝑃 . In this case 𝐷−1 = 𝐼 is the

identity function. This example of 𝑃(𝑥, 𝑦, 𝑧) =
(𝑎𝑥)2+(𝑎𝑦)2

𝑎2𝑧
 cancels nicely with the

encryption function, so that 𝐷 = 𝐼 is the identity function. When this happens, we say

this is a Keyless Decryption Scheme because 𝑃′ = 𝐼 ∘ 𝑃 = 𝑃. In this case, the function

that must be applied to the encrypted data is the same function that would be applied to

the original plaintext. No new function has be defined because, 𝑃′ = 𝑃.

This example of Keyless Decryption is not semantically secure for several

reasons, but non-trivial and semantically secure examples of Keyless Decryption can be

found for certain functions. In this example, if any of 𝑥, 𝑦, 𝑧 is zero, then its

corresponding Encrypted Variable will be zero. Secondly, the bit-length of the Variables

is easily deduced from the Encrypted Variables, which makes it useless for almost any

application. Ultimately, the encryption function of this example does not work for the

following reason. It is easy to find Key 𝑎 , to calculate the Inputs. The Key is the number

that divides 𝑒1, 𝑒2 once and divides 𝑒3 two times. There are different techniques for

defining secure encryption functions and keys without recurring to excessive bit-lengths,

because there are encryption functions whose equations do not determine the keys easily.

The solution presented in Sections 6 and 7 uses several strong encryption functions, and

randomly chooses a different one each time, adding an extra layer of security. Given a

large library of encryption functions {𝐸𝑗}𝑗
, for 𝑃 , each encryption function 𝐸𝑗 is

associated to a unique processing function 𝑃𝑗
∗
 .

V. MATHEMATICAL MODEL

We define encryption and processing functions that yield a decrypted plaintext

Credit Score, to be shared with the Client. The Credit Score function is normalized. If the

income to expense ratio and the worth to debt ratio go to infinity, the Credit Score is 10.

If, on the other hand, the expenses and debt grow with respect to income and worth, the

Credit Score is 0. The minimum approval score is suggested at 5 points, given the current

settings and weights of the parameters, but these can be modified for different cases. A

reasonably calibrated model for loan approvals based on a client’s financial data (income,

capital, debt, expenses, etc.) is proposed. Parameters can be modified to adapt the Credit

Score model to different scenarios (different types of loans such as micro loan, business

loan, loan period, interest, etc.). The proposed processing function 𝑃 is

 𝑃(𝑁𝐼, 𝑇𝐸,𝑊, 𝑇𝐷) =
𝐴 𝑁𝐼

√𝑁𝐼2+𝛼 𝑇𝐸2
+

𝐵 𝑊

√𝑊2+𝛽 𝑇𝐷2

where 𝐴,𝛼, 𝐵, 𝛽 are parameters, which we will set to numeric values to calibrate our

model. There are other parameters such as the interest rate and loan period which will be

set to 15% interest rate for a one-year loan, and which are used to calculate the Newly

Incurred Debt, Service to Debt, Total Debt and Total Expenses (including the new loan).

VI. RANDOMIZING METHODS

We can add another layer of security. Suppose we have a library of 𝑘 different

encryption functions {𝐸𝑗}𝑗=1
𝑘

, of a given processing function 𝑃 . If the client encrypts the

variables using 𝐸𝑖 , for some 𝐸𝑖 ∈ {𝐸𝑗}𝑗
, then the encrypted variables will have to be

processed with the corresponding processing function 𝑃𝑗
∗
. Furthermore, the codimension

of 𝐸𝑗 can be different from another encryption functions codimension. It is possible to

implement a randomized selection of the encryption functions that adds an extra layer of

security. After transforming the inputs into the variables, in Module I, the variables are

sent to Module II. Now, when Module II receives the variables, it chooses a method from

the library of encryption functions {𝐸𝑗}𝑗
, to encrypt the variables. Once 𝑗 is fixed, the

vector of variables in ℝ𝑛 will be transformed into a new vector of encrypted variables.

The bank has a corresponding library of processing functions {𝑃𝑗
∗}
𝑗

. Upon receiving the

vector of encrypted variables, the bank will be able to identify and run the correct

processing function. Having a large library of encryption methods is beneficial for the

security of the overall scheme because the data type and the number of encrypted variables

can be different each time process 𝑃 has to be applied to a vector 𝑥 , making it harder to

implement pattern recognition. A basic version of the personal loan Credit Score, detailed

above, has been implemented and will be made available for auditing purposes, as well as

for establishing collaboration opportunities.

VII. GENERALIZATION

In many instances it is desirable to have data encrypted in such a way that it can

then be re-encrypted for use in one of many different processing functions. Consider a

one-party scheme where the User has a numerical database ℇ(𝐷𝐵) encrypted at rest and

wishes to perform operations on elements of the database but wants to maintain the data

confidential. The finite library of functions for processing the data is {𝑃}𝑃 =

{𝑅, 𝑆, … , 𝑇}. The User requests for any of the functions to be applied to a vector of the

database. Suppose we have a library of at least two processing functions, where

𝑅(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑆(𝑥, 𝑦) = 𝑥𝑦. Every processing function 𝑃 ∈ {𝑃}𝑃 has its

own library of encryption functions. The encryption libraries are {𝐸𝑅,𝑖}𝑖 =

{𝐸𝑅,1, 𝐸𝑅,2, … }, {𝐸𝑆,𝑗}𝑗
= {𝐸𝑆,1, 𝐸𝑆,2, … },…. Each encryption library has its own

cardinality. The User sends a request to the database which includes an encrypted index

for a processing function 𝑃:ℝ𝑛 → ℝ, and the encrypted addresses of the elements of the

database. The request is a vector of 𝑛 + 1 coordinates (#𝑃, 𝑥1, 𝑥2, … , 𝑥𝑛). The first

coordinate of the request is an index, #𝑃 , indicating to the database the processing

function. The other 𝑛 coordinates of the request are the addresses of the elements of the

database. Then, the database randomly selects an encryption function 𝐸:ℝ𝑛 → ℝ𝑚

from the set {𝐸𝑃,𝑗}𝑗
. The database has a library of processing functions{𝑃 𝐸

∗ }𝑃,𝐸   =

 {𝑅𝐸𝑅,1
∗ , 𝑅𝐸𝑅,2

∗ ,  .  .  .  , 𝑆𝐸𝑆,1
∗ , 𝑆𝐸𝑆,2

∗ ,  .  .  . }, for all 𝑃 ∈ {𝑃𝑗}𝑗
 and all 𝐸 ∈ {𝐸𝑃,𝑗}𝑗

. The

processing function 𝑃𝐸
∗ depends on the processing function 𝑃 and the encryption

function 𝐸 , so that if we change the process 𝑃 then the encrypted processing function

𝑃𝐸
∗ is also different. Similarly, if we change the encryption function 𝐸 then the function

𝑃𝐸
∗ changes again. The database identifies and applies the correct function 𝑃𝐸

∗ to the other

𝑛 encrypted values.

VIII. CONCLUSIONS

Although HE is a promising concept in the science of cryptography, the same

reasons that make it safe also make it non applicable in many situations. Current energy

and time efficiency standards of HE are not met in a wide range of crucial applications.

This change of variable method offers many advantages including the fact that the

encrypted data can only be used for the intended purposes, and noise and precision are

managed without significant efficiency trade-offs. This scheme is applicable to a wide

range of processing functions, including addition and multiplication from which a FHE

scheme can be constructed. Trigonometric functions and the numeric derivative can also

be homomorphically encrypted. It is a flexible scheme that can be adapted to different

number of participants, permission configurations, security demands, efficiency

requirements, etc. These characteristics make it a far and wide reaching solution with

applications in online security, private Digital Signal Processing, smart cities and traffic

problems, Machine Learning such as in specific cases of AI and Neural Network training

utilizing sensitive data, operating vectors of encrypted databases, smart grids and energy

management, among other activities directly dependent on the difficult marriage of data

security and efficient computing. The proposed method can be integrated to SoC by

implementing this encryption scheme in a processor architecture with a Simple and Linear

Fast Adder having a linear and scalable topology [14], [15], [16]. Encrypted Processing

Units can help achieve secure cloud computing without sacrificing efficiency at hardware

and software level.

BIBLIOGRAPHICAL LIST

[1] Ronald L. Rivest, Len Adleman, and Michael L. Detouzos. On data banks and privacy

homomorphisms. In Foundations of Secure Computation, pages 165–179. Academic Press, 1978.

Available at https://people.csail.mit.edu/rivest/pubs.html#RAD78.

[2] C. Gentry, (2009). “A Fully Homomorphic Encryption Scheme,” Doctoral Dissertation,

Symposium on the Theory of Computing, NY, New York, USA, 2009.

[3] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John

Wernsing. CryptoNets: “Applying Neural Networks to Encrypted Data with High Throughput and

Accuracy.” In 33rd International Conference on Machine Learning (ICML 2016), volume 48 of

Proceedings of Machine Learning Research, pages 201–210. PMLR, 2016. URL:

http://proceedings.mlr.press/v48/giladbachrach16.html.

[4] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. “Fast Homomorphic

Evaluation of Deep Discretized Neural Networks.” In Advances in Cryptology – CRYPTO 2018,

Part III, volume 10993 of Lecture Notes in Computer Science, pages 483–512. Springer, 2018.
doi:10.1007/978-3-319-96878-0 17.

[5] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. “Simulating

Homomorphic Evaluation of Deep Learning Predictions.” In Cyber Security Cryptography and

Machine Learning (CSCML 2019), volume 11527 of Lecture Notes in Computer Science, pages

212–230. Springer, 2019. doi:10.1007/ 978-3-030-20951-3 20

[6] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. “Secure Large-Scale

Genome-Wide Association Studies Using Homomorphic Encryption.” Cryptology ePrint Archive,

Report 2020/563, 2020. https://ia.cr/2020/563.

[7] iDASH secure genome analysis competition. http://www.humangenomeprivacy.org.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness of learning with

errors.” Journal of Mathematical Cryptology, 9(3):169–203, 2015. doi:10.1515/jmc-2015-0016.

[9] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. “Classical

hardness of learning with errors.” In 45th Annual ACM Symposium on Theory of Computing, pages

575–584. ACM Press, 2013. doi:10.1145/2488608.2488680.

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. TFHE: Fast fully

homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020. Earlier versions

in ASIACRYPT 2016 and 2017. doi:10.1007/s00145-019-09319-x.

https://people.csail.mit.edu/rivest/pubs.html#RAD78
http://proceedings.mlr.press/v48/giladbachrach16.html
https://ia.cr/2020/563
http://www.humangenomeprivacy.org/

[11] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic Encryption in Less

than a Second.” In Advances in Cryptology-EUROCRYPT 2015, Part I, volume 9056 of Lecture

Notes in Computer Science, pages 617–640. Springer, 2015. doi:10.1007/978-3-662-46800-5 24.

[12] Joppe W. Bos, Kristin E. Lauter, et. al. Improved security for a ring-based fully homomorphic

encryption scheme. In Cryptography and Coding (IMACC 2013), volume 8308 of Lecture Notes in

Computer Science, pages 45–64. Springer, 2013. doi:10.1007/978-3-642-45239-0 4.

[13] Ramirez, J. 2015. Systems and Categories. arXiv:1509.03649v5 [math.CT]

[14] Ramirez, J. “Simple and Linear Fast Adder of Multiple Inputs and Its Implementation in a

Compute-In-Memory Architecture,” 2024 International Conference on Artificial Intelligence,

Computer, Data Sciences and Applications (ACDSA), Victoria, Seychelles, 2024, pp. 1-11,

doi:10.1109/ACDSA59508.2024.10467957.

[15] Ramirez, J. “SIMPLE AND LINEAR FAST ADDER,” WIPO, Patentscope. Publication

Number: WO/2023/220537. Publication Date: 16/11/2023. Applicant’s name: Juan Pablo Ramirez

[16] Ramirez, J. 2023. “Canonical Set Theory with Applications from Matrix Operations and Data

Structures to Homomorphic Encryption”. Author’s personal homepage: www.binaryprojx.

http://www.binaryprojx/

