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Описана схема гомоморфного шифрования. Данные шифруются через случайное 

изменение переменных, а затем операции выполняются на зашифрованном тексте, 

который одновременно обрабатывается и расшифровать результат. Это улучшает 

традиционный гомоморфный Шифрование путем объединения двух этапов в один, 

Гарантия того, что данные могут быть использованы только по назначению. Шум и 

точность управляемы, без большой эффективности Компромиссы. Двухпартийная 

Схема между Клиентом и Банком была разработана в качестве Доказательства-

Концепция. Банк не имеет доступа к входным данным, представляющимКлиентские 

данные, но способен обрабатывать зашифрованные векторы. Тем Метод является 

гибким и может быть адаптирован для разного числа сторон, управление 

разрешениями, уровни безопасности, оперативность требования и т.д. Гомоморфный 

энкрипДоказательство с нулевым разглашением, безопасность данных, машинное 

обучение. 

I. INTRODUCTION 

Traditionally, if one must process encrypted data, first the data is decrypted, and 

then the data is processed. This exposes the data to the second, and potentially third parties, 

in many instances. Homomorphic Encryption [1], [2] addresses this issue by changing the 

order of these two steps by first processing the data, while still encrypted, and then 

decrypting the result to plaintext. Machine Learning and AI applications that require 

sharing mass amounts of sensitive data, smart grids, large networks, traffic control, 

electronic voting, energy management, among many others, can be implemented if certain 

privacy issues are solved [3-7]. Let 𝐸  a function that encrypts natural numbers. Suppose 

we encrypt two numbers 𝑥, 𝑦  to obtain two new numbers 𝐸𝑥, 𝐸𝑦 . We won't worry right 



now about which space the ciphertext is defined in, and suppose we have an operation 

⊕  defined in that space. The operation of these gives 𝐸𝑥 ⊕ 𝐸𝑦 . For most encryption 

functions, this is not equal to 𝐸(𝑥 ⊕ 𝑦). Therefore, decrypting 𝐸𝑥 ⊕ 𝐸𝑦  does not 

yield the expected result 𝑥 ⊕ 𝑦 . If there exists a computable function 𝐷  such that 𝑥 +

𝑦 = 𝐷(𝐸𝑥 ⊕ 𝐸𝑦), for any choice of 𝑥, 𝑦 ∈ ℕ , we have a Partially Homomorphic 

Encryption Scheme for Addition (+). If the same property is also satisfied for 

multiplication (·), then it is a Fully Homomorphic Encryption Scheme. The first difficulty 

in HE is that an operation and an encryption function are almost never homomorphic, 

𝐸(𝑥 + 𝑦)  ≠  𝐸𝑥 ⊕ 𝐸𝑦. Mathematical homomorphisms that can be used for HE are 

not practical solutions because of the complicated structures involved. Consequently, 

precision and noise are not easily mitigated [8], [9] making the algorithms unpractical or 

energy inefficient [10], [11], [12] in many scenarios. We explore a Keyless Decryption 

method that merges processing and decryption into a single step, avoiding Bootstrapping 

techniques. In this case, the processing function is the decryption key. The first party 

encrypts the inputs by applying a random change of variable from a library of encryption 

functions. The second party possesses a corresponding library of process/decryption 

functions and determines which of these functions will process/decrypt the result. 

Applying any other function of the library yields a meaningless answer. We describe an 

encrypted Credit Score calculation for a personal one-year loan as a Proof of Concept. 

The commutative diagram for representing a HE Scheme, in its simplest 

conceptual form, is given by the equation 𝑃 = 𝐷 ∘ 𝑃∗ ∘ 𝐸  shown below (1), where 

𝑃: 𝐴 → 𝐵  is the process and 𝑃∗  is the process applied to the encrypted data. 

                                                                                                              (1) 

This diagram illustrates the basic relation for Encrypting the domain of the 

function and decrypting the result. Applying process 𝑃  to the plaintext is equivalent to 

encrypting, then applying 𝑃∗ and finally decrypting. We propose an HE scheme based on 

the concept of change of variable. Suppose a calculation 𝑃:ℝ𝑛 → ℝ must be applied to 

an ordered 𝑛 -tuple of variables 𝑥 = (𝑥𝑖)𝑖=1
𝑛 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛. We encrypt 

these 𝑛  variables by applying a computable function 𝐸:ℝ𝑛 → ℝ𝑚 to the ordered 𝑛 -

tuple. An encryption function of 𝑃  is a computable function 𝐸:ℝ𝑛 → ℝ𝑚  if there 

exists a computable function 𝑃∗: ℝ𝑚 → ℝ such that 𝑃𝑥 = (𝑃∗ ∘ 𝐸)𝑥. In this case we 

say 𝑃, 𝑃∗ are an ordered pair of homomorphic functions [13] with respect to encryption 

function 𝐸 . 

 



II. ENCRYPTION BY CHANGE OF VARIABLE 

Suppose 𝑃:ℝ𝑛 → ℝ⬚ is a function of 𝑛  independent variables, and one party 

wishes for a second party to compute 𝑃(𝑥1, 𝑥2,… , 𝑥𝑛) without having the capability of 

knowing the input vector (𝑥1, 𝑥2, … , 𝑥𝑛). Let 𝐸:ℝ𝑛 → ℝ𝑛 , defined by functions 

𝑒1, 𝑒2, … , 𝑒𝑛:ℝ
𝑛 → ℝ such that 

          𝑃 ∘ 𝐸 = 𝐷−1 ∘ 𝑃                                                  (2) 

for some invertible function 𝐷−1: ℝ → ℝ. 

 

Suppose the change of variables 𝐸  expresses 𝑃 ∘ 𝐸  in terms of an invertible 

function 𝐷−1, of 𝑃 . If the inverse function 𝐷  is computable then we have encryption 

and decryption functions 𝐸,𝐷 , respectively. For example, let 𝑃:ℝ2 → ℝ  be the 

function 𝑃(𝑥, 𝑦) = 𝑥 + 𝑦2 , and let 𝑒1(𝑥) = 𝑎2𝑥2 + 2𝑎2𝑥𝑦2  and 𝑒2(𝑦) =

𝑎𝑦2, for some parameter 𝑎 ∈ ℝ . Then 

(𝑃 ∘ 𝐸)(𝑥, 𝑦) = 𝑒1(𝑥) + (𝑒2(𝑦))
2
= 𝑎2(𝑥 + 𝑦2)2 = 𝑎2(𝑃(𝑥, 𝑦))

2
. 

We have found 𝑃 ∘ 𝐸  to be expressed in terms of 𝑃 , namely(𝑃 ∘ 𝐸)(𝑥, 𝑦) =

𝑎2(𝑃(𝑥, 𝑦))
2

. In this case, the function 𝐷−1 is given by𝐷−1(𝑥) = 𝑎2𝑥2. Therefore, 

the decryption function is given by 𝐷(𝑥) =
√𝑥

𝑎
. This implies 𝑃 = 𝐷 ∘ 𝑃 ∘ 𝐸 =

1

𝑎
(𝑃 ∘ 𝐸)

1

2. Let us understand what this relation means, and what it permits. Suppose we 

wish for a second party to compute 𝑃(𝑥0, 𝑦0) = 𝑥0 + 𝑦0
2, for constants 𝑥0, 𝑦0 ∈ ℝ, 

but we do not wish to share the plaintext vector (𝑥0, 𝑦0) with the second party. First, we 

encrypt the inputs, using the function 𝐸  described above, to obtain 𝐸(𝑥0, 𝑦0) =

(𝑒1(𝑥0, 𝑦0), 𝑒2(𝑥0, 𝑦0)), and send this encrypted vector to the second party. The 

second party will then take this encrypted vector and apply function 𝑃′ = 𝐷 ∘ 𝑃  to 

obtain the desired result. We collapse (1) into a three diagram. If we consider the 

composition 𝑃′ = 𝐷 ∘ 𝑃 as a single function, the resulting relation is 𝑃 = 𝑃′ ∘ 𝐸. 



                                                                                                  (3) 

Can the second party decrypt the encrypted vector to find the original inputs 

𝑥0, 𝑦0  with the information available? The information available is 1) Processing 

function 𝑃 , 2) Encryption function 𝐸  and Encrypted Variables 𝑒1, 𝑒2, and 3) Final result 

𝑝0. From 1) and 3) we have equation 𝑥0 + 𝑦0
2 = 𝑝0, where 𝑝0 = (𝑃′ ∘ 𝐸)(𝑥0, 𝑦0). 

Two more equations are given by 𝑎2𝑥0
2 + 2𝑎2𝑥0𝑦0

2 = 𝑒1 and 𝑎𝑦0
2 = 𝑒2. A solution 

for 𝑎, 𝑥0, 𝑦0, of this system of equations must be found. If we find a solution for 𝑎 , we 

can then calculate 𝑥, 𝑦 . Let us specify the bit size of the values in question. We have 64-

bit inputs 𝑥0, 𝑦0. We also have a 128-bit encryption key, 𝑎 . This key is unknown to the 

second party, otherwise it could easily decrypt 𝑒1, 𝑒2 to find 𝑥0, 𝑦0 . For purposes of 

finding solutions to this system of equations the key 𝑎  is an unknown integer of 128 bits. 

Finding the original inputs is equivalent to finding the key 𝑎 . If the second party knows 

the inner workings of the scheme, they would know to start by finding the factors of the 

256-bit number 𝑒2. Now that we understand where vulnerabilities arise, we can ask a few 

questions to maximize security. Let us start by asking if a type of integer is optimal for the 

security parameter? For example, if 𝑎 is always chosen to be a prime number, then finding 

𝑎  is trivial. To find 𝑎 , you must simply find the factors of 𝑒2 = 𝑎𝑦2 that are smaller 

than 64-bits. Once we have the 128-bit key 𝑎 , we can calculate 𝑦  and then 𝑥 . Thus, the 

key should not be chosen to be a prime number. The more prime factors in 𝑎 , the better. 

For every encryption function 𝐸 , of some processing function 𝑃 , we have different 

security parameters. In each case, the keys have different required forms to maximize 

security. 
 We give a definition of encryption and decryption functions that supersedes the 

previous ones. If, more generally, given an encryption function 𝐸:ℝ𝑛 → ℝ𝑚  we can 

find a computable function 𝑃∗: ℝ𝑚 → ℝ  such that 𝑃 = 𝑃∗ ∘ 𝐸 , then we have an 

encryption scheme for process 𝑃 . 

 
 

There is no straightforward method for finding the most secure and efficient 

encryption and processing functions 𝐸,𝑃∗, for a given process 𝑃 . We use the fact that 

certain encryption functions are safe (the keys, and therefore the plaintext inputs, cannot 

easily be found). Even if the encryption and processing functions 𝐸, 𝑃∗  are known, 

finding the keys is a very difficult problem. One way to ensure the encryption function 

remains unknown is to have a large library of encryption functions for each processing 



function, and then randomly select an encryption function each time. This solution is 

discussed in Sections 6 and 7. The method proposed here allows for an FHE scheme that 

can be adapted for different number of parties, permission configurations and security 

needs. In Section 5, we outline a simple two-party scheme to simulate a personal loan 

Credit Score where the first party is a Client, and the second party is a Bank. The Client 

will encrypt the inputs and share them with the Bank. The Bank receives these encrypted 

values, processes the encrypted data and sends the result back to the Client. 

III. KEYLESS DECRYPTION 

We will illus trate a special case of relation (3). Let 𝑃(𝑥, 𝑦, 𝑧) =
𝑥2+𝑦2

𝑧
. 

If we make the change of variables 𝑒1(𝑥) = 𝑎𝑥,  𝑒2(𝑦) = 𝑎𝑦,  𝑒3(𝑧) = 𝑎2𝑧, then 

we have 𝑃 = 𝑃 ∘ 𝐸 . Again, 𝑃 ∘ 𝐸  is a function of 𝑃 . In this case 𝐷−1 = 𝐼 is the 

identity function. This example of 𝑃(𝑥, 𝑦, 𝑧) =
(𝑎𝑥)2+(𝑎𝑦)2

𝑎2𝑧
 cancels nicely with the 

encryption function, so that 𝐷 = 𝐼  is the identity function. When this happens, we say 

this is a Keyless Decryption Scheme because 𝑃′ = 𝐼 ∘ 𝑃 = 𝑃. In this case, the function 

that must be applied to the encrypted data is the same function that would be applied to 

the original plaintext. No new function has be defined because, 𝑃′ = 𝑃. 

 

This example of Keyless Decryption is not semantically secure for several 

reasons, but non-trivial and semantically secure examples of Keyless Decryption can be 

found for certain functions. In this example, if any of 𝑥, 𝑦, 𝑧  is zero, then its 

corresponding Encrypted Variable will be zero. Secondly, the bit-length of the Variables 

is easily deduced from the Encrypted Variables, which makes it useless for almost any 

application. Ultimately, the encryption function of this example does not work for the 

following reason. It is easy to find Key 𝑎 , to calculate the Inputs. The Key is the number 

that divides 𝑒1, 𝑒2  once and divides 𝑒3  two times. There are different techniques for 

defining secure encryption functions and keys without recurring to excessive bit-lengths, 

because there are encryption functions whose equations do not determine the keys easily. 

The solution presented in Sections 6 and 7 uses several strong encryption functions, and 

randomly chooses a different one each time, adding an extra layer of security. Given a 

large library of encryption functions {𝐸𝑗}𝑗
, for 𝑃 , each encryption function 𝐸𝑗  is 

associated to a unique processing function 𝑃𝑗
∗
 . 

 

 

 

 



V. MATHEMATICAL MODEL 

We define encryption and processing functions that yield a decrypted plaintext 

Credit Score, to be shared with the Client. The Credit Score function is normalized. If the 

income to expense ratio and the worth to debt ratio go to infinity, the Credit Score is 10. 

If, on the other hand, the expenses and debt grow with respect to income and worth, the 

Credit Score is 0. The minimum approval score is suggested at 5 points, given the current 

settings and weights of the parameters, but these can be modified for different cases. A 

reasonably calibrated model for loan approvals based on a client’s financial data (income, 

capital, debt, expenses, etc.) is proposed. Parameters can be modified to adapt the Credit 

Score model to different scenarios (different types of loans such as micro loan, business 

loan, loan period, interest, etc.). The proposed processing function 𝑃 is 

 𝑃(𝑁𝐼, 𝑇𝐸,𝑊, 𝑇𝐷) =
𝐴 𝑁𝐼

√𝑁𝐼2+𝛼 𝑇𝐸2
+

𝐵 𝑊

√𝑊2+𝛽 𝑇𝐷2
 

where 𝐴,𝛼, 𝐵, 𝛽  are parameters, which we will set to numeric values to calibrate our 

model. There are other parameters such as the interest rate and loan period which will be 

set to 15% interest rate for a one-year loan, and which are used to calculate the Newly 

Incurred Debt, Service to Debt, Total Debt and Total Expenses (including the new loan). 

VI. RANDOMIZING METHODS 

We can add another layer of security. Suppose we have a library of 𝑘  different 

encryption functions {𝐸𝑗}𝑗=1
𝑘

, of a given processing function 𝑃 . If the client encrypts the 

variables using 𝐸𝑖 , for some 𝐸𝑖 ∈ {𝐸𝑗}𝑗
, then the encrypted variables will have to be 

processed with the corresponding processing function 𝑃𝑗
∗
. Furthermore, the codimension 

of 𝐸𝑗  can be different from another encryption functions codimension. It is possible to 

implement a randomized selection of the encryption functions that adds an extra layer of 

security. After transforming the inputs into the variables, in Module I, the variables are 

sent to Module II. Now, when Module II receives the variables, it chooses a method from 

the library of encryption functions {𝐸𝑗}𝑗
, to encrypt the variables. Once 𝑗  is fixed, the 

vector of variables in ℝ𝑛 will be transformed into a new vector of encrypted variables. 

The bank has a corresponding library of processing functions {𝑃𝑗
∗}
𝑗

. Upon receiving the 

vector of encrypted variables, the bank will be able to identify and run the correct 

processing function. Having a large library of encryption methods is beneficial for the 

security of the overall scheme because the data type and the number of encrypted variables 

can be different each time process 𝑃  has to be applied to a vector 𝑥 , making it harder to 

implement pattern recognition. A basic version of the personal loan Credit Score, detailed 

above, has been implemented and will be made available for auditing purposes, as well as 

for establishing collaboration opportunities. 



VII. GENERALIZATION 

In many instances it is desirable to have data encrypted in such a way that it can 

then be re-encrypted for use in one of many different processing functions. Consider a 

one-party scheme where the User has a numerical database ℇ(𝐷𝐵) encrypted at rest and 

wishes to perform operations on elements of the database but wants to maintain the data 

confidential. The finite library of functions for processing the data is {𝑃}𝑃 =

{𝑅, 𝑆, … , 𝑇}. The User requests for any of the functions to be applied to a vector of the 

database. Suppose we have a library of at least two processing functions, where 

𝑅(𝑥, 𝑦) = 𝑥 + 𝑦  and 𝑆(𝑥, 𝑦) = 𝑥𝑦. Every processing function 𝑃 ∈ {𝑃}𝑃  has its 

own library of encryption functions. The encryption libraries are {𝐸𝑅,𝑖}𝑖 =

{𝐸𝑅,1, 𝐸𝑅,2, … }, {𝐸𝑆,𝑗}𝑗
= {𝐸𝑆,1, 𝐸𝑆,2, … },…. Each encryption library has its own 

cardinality. The User sends a request to the database which includes an encrypted index 

for a processing function 𝑃:ℝ𝑛 → ℝ, and the encrypted addresses of the elements of the 

database. The request is a vector of 𝑛 + 1  coordinates (#𝑃, 𝑥1, 𝑥2, … , 𝑥𝑛). The first 

coordinate of the request is an index, #𝑃 , indicating to the database the processing 

function. The other 𝑛  coordinates of the request are the addresses of the elements of the 

database. Then, the database randomly selects an encryption function 𝐸:ℝ𝑛 → ℝ𝑚 

from the set {𝐸𝑃,𝑗}𝑗
. The database has a library of processing functions{𝑃 𝐸

∗ }𝑃,𝐸   =

 {𝑅𝐸𝑅,1
∗ , 𝑅𝐸𝑅,2

∗ ,  .  .  .  , 𝑆𝐸𝑆,1
∗ , 𝑆𝐸𝑆,2

∗ ,  .  .  . }, for all 𝑃 ∈ {𝑃𝑗}𝑗
 and all 𝐸 ∈ {𝐸𝑃,𝑗}𝑗

. The 

processing function 𝑃𝐸
∗  depends on the processing function 𝑃  and the encryption 

function 𝐸 , so that if we change the process 𝑃  then the encrypted processing function 

𝑃𝐸
∗ is also different. Similarly, if we change the encryption function 𝐸  then the function 

𝑃𝐸
∗ changes again. The database identifies and applies the correct function 𝑃𝐸

∗ to the other 

𝑛  encrypted values. 

VIII. CONCLUSIONS 

Although HE is a promising concept in the science of cryptography, the same 

reasons that make it safe also make it non applicable in many situations. Current energy 

and time efficiency standards of HE are not met in a wide range of crucial applications. 

This change of variable method offers many advantages including the fact that the 

encrypted data can only be used for the intended purposes, and noise and precision are 

managed without significant efficiency trade-offs. This scheme is applicable to a wide 

range of processing functions, including addition and multiplication from which a FHE 

scheme can be constructed. Trigonometric functions and the numeric derivative can also 

be homomorphically encrypted. It is a flexible scheme that can be adapted to different 

number of participants, permission configurations, security demands, efficiency 

requirements, etc. These characteristics make it a far and wide reaching solution with 

applications in online security, private Digital Signal Processing, smart cities and traffic 



problems, Machine Learning such as in specific cases of AI and Neural Network training 

utilizing sensitive data, operating vectors of encrypted databases, smart grids and energy 

management, among other activities directly dependent on the difficult marriage of data 

security and efficient computing. The proposed method can be integrated to SoC by 

implementing this encryption scheme in a processor architecture with a Simple and Linear 

Fast Adder having a linear and scalable topology [14], [15], [16]. Encrypted Processing 

Units can help achieve secure cloud computing without sacrificing efficiency at hardware 

and software level. 
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