
On a Simple and Linear Fast Adder and Its
Implementation for In-Memory Matrix

Multiplication
Juan P. Ramirez

Jalisco, México
jramirez@binaryprojx.com;

jramirez@ddotslab.com;
Personal web-page: www.binaryprojx.com

Abstract—A Simple and Linear Fast Adder has been proposed
as basis for a rectangular arrangement of Half Adders and
memory elements, of size n × b, that functions as an adder of
n-many b-bit inputs. Gate depth and topological complexity are
constant and minimum. The one-to-one correspondence between
memory elements and arithmetic logic gates allow a two-level
architecture. The levels are simply connected in a one-to-one
manner, eliminating the Von Neumann bottleneck.

Index Terms—Demo Track - 4-page, Applied Mathematics,
Compute-In-Memory, Fast Adder, Matrix Multiplication

I. INTRODUCTION

The Patent-Pending Simple and Linear Fast Adder is ex-
pected to outperform other parallel fast adders in terms of
energy efficiency, time-delays, design and production costs
because of its uniform and scaleable design. The inter-
national patent application is found at the WIPO on-line
portal using ID/Number: WO/2023/220537 for conducting a
PATENTSCOPE Simple Search. The linear adder is general-
ized into a rectangular circuit that 1) Adds multiple inputs and
2) Multiplies two inputs. It is obtained by connecting several
copies of the SLFA, in a simple manner. The scaleability
of this circuit allows for an area, energy and time efficient
implementation of matrix multiplication, using the theoretical
minimum circuit area and complexity. Compounded with
these benefits, the circuit is implemented as a Compute-In-
Memory Architecture. The justification and deduction of the
addition and multiplication performed by this architecture [1]
is included as Supplementary Material. An extensive preprint
is available at the author’s homepage, [2]. The set theory
for these operations is proposed as a canonical description
of mathematics. Applications to group theory, number theory,
combinatorics, real analysis, among others, are included. The
set theoretic basis is also found in [3].

II. SIMPLE AND LINEAR FAST ADDER

The SLFA is defined to perform addition of two inputs
in terms of a logarithmic-time Finite State Machine [1], [2].
An addition algorithm is described, that adds as sets, and not

sequences. Each number is represented as a set of numbers,
according to its Ackermann Coding. That is to say, the number∑

i 2
xi is represented as the set {x1, x2, . . . , xn}. To add

two numbers A,B, form two new sets A′ = A△B and
B′ = s(A ∩ B), where A△B is the symmetric difference.
The function s adds 1 to the elements of its argument. The
addition of the two new sets is equal to the original addition
A⊕B = A′ ⊕B′. The powers of 2 in A⊕B have only been
rearranged. The term A′ consisting of non-repeated powers
(symmetric difference). The term B′ is given in terms of the
repeated powers. It is equal to B′ = s(A ∩ B). In a finite
number of iterations the intersection A(k) ∩ B(k) = ∅ is
equal to the empty set. The final result is A(k+1), because
A⊕B = A(k+1) ⊕B(k+1) = A(k+1) ⊕ s(∅) = A(k+1).

Let us find the addition of 11 + 23 = 30. The addition
is the sum of sets A ⊕ B = {0, 1, 3} ⊕ {0, 1, 2, 4} because
11 = 20 + 21 + 23 and 23 = 20 + 21 + 22 + 24. The inputs
are represented with two side-by-side columns.

0 0
0 1
1 0
0 1
1 1
1 1.

Then, two new columns are formed. The column on the left
will take the value 1 everywhere in the symmetric difference.
The right column will take the value 1 everywhere in the
intersection, but these values need to be displaced one level up
because the intersection is representing addition of two equal
powers of 2 and 2n+2n = 2n+1. This gives two new columns

0 0
1 0
1 0
1 1
0 1
0 0.



Iterating again gives the columns

0 0
1 0
1 1
0 0
1 0
0 0.

In the next iteration we get

0 0
1 1
0 0
0 0
1 0
0 0.

If the process is iterated again it gives

0 1
0 0
0 0
0 0
1 0
0 0.

If the process is iterated once more, it reaches a stable state

1 0
0 0
0 0
0 0
1 0
0 0.

because the same two columns are given in the next iteration.
Thus, the Finite State Machine has reached a stable state
and the answer, 11 + 23 = 34, is given in the left column.
In general, the left column of state S(tk+1) is given by the
symmetric difference in state S(tk). The right column of state
S(tk+1) is given by a displacement, one level up, of the
intersection in state S(tk). A stable state is reached in a finite
number of steps when the right column is empty. The average
number of steps for adding two n-bit numbers is max(n), and
the total number of steps is bounded by n. The probability of
reaching stability in i ≤ n steps is the probability of obtaining
i-many consecutive heads in a trial of n-many fair coin tosses.
The symmetric difference in each bit is found with an XOR
gate, while the intersection in the same bit is given by an
AND gate. An n-bit SLFA consists of n subunits connected
in series, each sub unit consisting of two bits of memory and
one Half Adder (one XOR and one AND gate). This parallel
adder of linear topology, and constant complexity and gate
depth is shown in Fig. 1. Each XOR gate is connected to
the left column register of the same significant bit, while the
AND gate is connected to the right column register of the next
significant bit. Each register must be a double-edge triggered
register capable of reading on the rising edge and writing on
the falling edge.

Fig. 1. A 4-bit SLFA, consisting of 4 subunits connected in series. Each
subunit is made up of a half adder and a 2-bit register. The ‘XOR’ gates
find the symmetric difference, while the intersection is found in the output of
the ‘AND’ gates. A bit shift is applied to the intersection, and the process is
iterated until register RB is the zero vector.

III. GENERALIZING THE SLFA

A method is described for reducing the addition of n-many
inputs to the addition of two inputs, which is a generalization
of the Finite State Machine for adding two inputs. This
column reduction algorithm is described in [1], [2], and we
only briefly outline it here. The sum of k summands is
reduced to max(k) + 1 summands. Consider the sum of 4-
many, 8-bit numbers. Let A = a0a1 · · · a7, B = b0b1 · · · b7,



C = c0c1 · · · c7, D = d0d1 · · · d7.

a7 b7 c7 d7
a6 b6 c6 d6
a5 b5 c5 d5
a4 b4 c4 d4
a3 b3 c3 d3
a2 b2 c2 d2
a1 b1 c1 d1
a0 b0 c0 d0,

(1)

where each ai, bi, ci, di takes a value in {0, 1}. There are a
total of four columns. Therefore, three bits are sufficient for
counting how many 1’s are contained in a single row of (1)
because max(4) + 1 = 2 + 1 = 3. A 3-column grid with
8 + (3− 1) = 10 many rows will represent the same addition
as the original four columns of (1).

0 0 c′9
0 b′8 c′8
a′7 b′7 c′7
a′6 b′6 c′6
a′5 b′5 c′5
a′4 b′4 c′4
a′3 b′3 c′3
a′2 b′2 c′2
a′1 b′1 0
a′0 0 0

(2)

The elements a′0, b
′
1, c

′
2 are used to write the number of 1’s

in row 0 of (1). The elements a′1, b
′
2, c

′
3 are used to write the

number of 1’s in row 1, and elements a′2, b
′
3, c

′
4 are used to

write the number of 1’s in row 2, etc. The three column grid
can be reduced to two columns, by the same process.

A rectangular version of the SLFA can be adapted to carry
out this column reduction method for addition of n-many b-bit
inputs. A rectangular grid of n × b nodes is formed by con-
necting multiple SLFAs side-by-side using simple connections
between nodes, as shown in Fig. 2. Only nodes on the same
row or column are connected.

Memory is placed on one level and Half Adders in a second
level. Both levels are a simple rectangle circuit of equal size,
and they are connected in one-to-one manner. Each memory
node is connected to its corresponding HA, as in Fig. 3.

We can conveniently scale the circuit of Fig. 2 to find the
dot product u · v of two n-vectors. A single copy of the
rectangular circuit of Fig. 2 allows us to find one of the
partial products of the dot product. Having n-many copies
of the rectangular circuit, as shown below in Fig. 4, we can
simultaneously calculate the partial products of u · v. That is
to say, each expression uivi is calculated in the i-th copy, for
every i = 1, 2, . . . , n.

The outputs of the n-many Multiple Input Adders of Fig. 4
can be sent to another Multiple Input Adder that will add the
partial products

∑
i uivi. Let U,V two matrices of size p×n

and n × q, respectively. Taking q-many copies of the circuit
M1 in Fig. 4, we obtain a larger scale rectangular arrangement
that calculates all the partial products for finding an entire row

Fig. 2. A b × n grid constitutes an adder of n-many b-bit numbers that
simulates the column reduction algorithm. Each row consists of an n-bit
SLFA. Every node of each SLFA has an extra one-bit register, called the
principal bit. Every SLFA conforming a row, counts the number of 1’s in
that row. Then, the results are sent to principal bits of the same column, in a
diagonal manner that simulates the column reduction algorithm.

Fig. 3. The multiple input adder can be organized in two layers. One layer
is reserved for memory registers, and the other layer is a grid of half adders.

of the product matrix U × V, in parallel. A set of q-many
Multiple Input Adders is used to add the respective partial
products. Each one of these q-many adders finds an element
for the given row of the product matrix. An entire row of the
product matrix is found in parallel in the time that it takes
to multiply two b-bit numbers (finding partial products), plus
the time it takes to add n-many 2b-bit inputs (adding partial
products). This circuit is illustrated in Fig. 5.

IV. CONCLUSION

My mathematical research provides an optimal represen-
tation of all mathematical objects and structures [1], [2],
[3], with the potential to revolutionize computer science and
applied mathematics. Applications include a general method



Fig. 4. M1 consists of n-many Multiple Input Adders, each one able to
compute a partial product of the dot product u · v.

Fig. 5. Using a total of q-many units M1, . . . ,Mq , it is possible to execute
the partial products of a row. The multiple input adders of M0 will add the
corresponding partial products. The multiple input adder MIAi, of M0, will
add the partial products MIA(i,1), . . . ,MIA(i,n), calculated in Mi.

for a new processor architecture with unique capabilities and
characteristics that can replace the existing Von-Neumann
Architecture with a Computing-In-Memory scheme, which is
key in achieving time and energy efficient AI and Neural
Network training

Through a fundamental solution to the problem of numerical
representations and their computational complexity, we seek
to transform the computing industry. This initiative is based
on a major revision of mathematical foundations that allows
fast and low-powered calculation of mathematical operations.

Mathematics is the invisible framework supporting the tech-
nology and innovations we encounter every day. Not only
does it advance our understanding of abstract concepts, it also
provides practical solutions to real-world challenges because
it is the universal language behind all sciences. The coding
language that computers understand is built on mathematics.
Consequently, by refining the underlying principles of math-
ematics, we essentially upgrade the ’language’ that enables
our technology to communicate and perform tasks more ef-
ficiently. Using a novel conceptualization of the foundations
of mathematics, with immediate applications in a number of
key technologies facilitating seamless data representation and
computational operations, we introduce arithmetic efficiency
in ways previously unexplored at the Hardware level.

REFERENCES

[1] “Simple and Linear Fast Adder of Multiple Inputs and Its Implemen-
tation in a Compute-In-Memory Architecture,” Proc. of International
Conference on Artificial Intelligence, Computer, Data Sciences and
Applications. 2024, Victoria-Seychelles, 70.

[2] J. P. Ramı́rez, “Canonical Set Theory with Applications from Parallel
Matrix Operations and Data Structures to Homomorphic Encryption,”
(Preprint) Author’s homepage: www.binaryprojx.com. 2023.

[3] J. P. Ramı́rez, “A New Set Theory for Analysis,” Axioms. 2019, 8, 31.


